Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exintrbi | GIF version |
Description: Add/remove a conjunct in the scope of an existential quantifier. (Contributed by Raph Levien, 3-Jul-2006.) |
Ref | Expression |
---|---|
exintrbi | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71 387 | . . 3 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜑 ∧ 𝜓))) | |
2 | 1 | albii 1458 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ ∀𝑥(𝜑 ↔ (𝜑 ∧ 𝜓))) |
3 | exbi 1592 | . 2 ⊢ (∀𝑥(𝜑 ↔ (𝜑 ∧ 𝜓)) → (∃𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ 𝜓))) | |
4 | 2, 3 | sylbi 120 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1341 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: exintr 1622 |
Copyright terms: Public domain | W3C validator |