ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exintrbi GIF version

Theorem exintrbi 1655
Description: Add/remove a conjunct in the scope of an existential quantifier. (Contributed by Raph Levien, 3-Jul-2006.)
Assertion
Ref Expression
exintrbi (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 ↔ ∃𝑥(𝜑𝜓)))

Proof of Theorem exintrbi
StepHypRef Expression
1 pm4.71 389 . . 3 ((𝜑𝜓) ↔ (𝜑 ↔ (𝜑𝜓)))
21albii 1492 . 2 (∀𝑥(𝜑𝜓) ↔ ∀𝑥(𝜑 ↔ (𝜑𝜓)))
3 exbi 1626 . 2 (∀𝑥(𝜑 ↔ (𝜑𝜓)) → (∃𝑥𝜑 ↔ ∃𝑥(𝜑𝜓)))
42, 3sylbi 121 1 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 ↔ ∃𝑥(𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1370  wex 1514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-ial 1556
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  exintr  1656
  Copyright terms: Public domain W3C validator