ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.40 GIF version

Theorem 19.40 1655
Description: Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
19.40 (∃𝑥(𝜑𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓))

Proof of Theorem 19.40
StepHypRef Expression
1 exsimpl 1641 . 2 (∃𝑥(𝜑𝜓) → ∃𝑥𝜑)
2 simpr 110 . . 3 ((𝜑𝜓) → 𝜓)
32eximi 1624 . 2 (∃𝑥(𝜑𝜓) → ∃𝑥𝜓)
41, 3jca 306 1 (∃𝑥(𝜑𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-ial 1558
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  19.40-2  1656  19.41h  1709  19.41  1710  exdistrfor  1824  uniin  3879  copsexg  4301  dmin  4900  imadif  5368  imainlem  5369
  Copyright terms: Public domain W3C validator