ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.40 GIF version

Theorem 19.40 1645
Description: Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
19.40 (∃𝑥(𝜑𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓))

Proof of Theorem 19.40
StepHypRef Expression
1 exsimpl 1631 . 2 (∃𝑥(𝜑𝜓) → ∃𝑥𝜑)
2 simpr 110 . . 3 ((𝜑𝜓) → 𝜓)
32eximi 1614 . 2 (∃𝑥(𝜑𝜓) → ∃𝑥𝜓)
41, 3jca 306 1 (∃𝑥(𝜑𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-ial 1548
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  19.40-2  1646  19.41h  1699  19.41  1700  exdistrfor  1814  uniin  3859  copsexg  4277  dmin  4874  imadif  5338  imainlem  5339
  Copyright terms: Public domain W3C validator