ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.40 GIF version

Theorem 19.40 1654
Description: Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
19.40 (∃𝑥(𝜑𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓))

Proof of Theorem 19.40
StepHypRef Expression
1 exsimpl 1640 . 2 (∃𝑥(𝜑𝜓) → ∃𝑥𝜑)
2 simpr 110 . . 3 ((𝜑𝜓) → 𝜓)
32eximi 1623 . 2 (∃𝑥(𝜑𝜓) → ∃𝑥𝜓)
41, 3jca 306 1 (∃𝑥(𝜑𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-ial 1557
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  19.40-2  1655  19.41h  1708  19.41  1709  exdistrfor  1823  uniin  3870  copsexg  4288  dmin  4886  imadif  5354  imainlem  5355
  Copyright terms: Public domain W3C validator