ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.40 GIF version

Theorem 19.40 1611
Description: Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
19.40 (∃𝑥(𝜑𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓))

Proof of Theorem 19.40
StepHypRef Expression
1 exsimpl 1597 . 2 (∃𝑥(𝜑𝜓) → ∃𝑥𝜑)
2 simpr 109 . . 3 ((𝜑𝜓) → 𝜓)
32eximi 1580 . 2 (∃𝑥(𝜑𝜓) → ∃𝑥𝜓)
41, 3jca 304 1 (∃𝑥(𝜑𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wex 1472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-4 1490  ax-ial 1514
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  19.40-2  1612  19.41h  1665  19.41  1666  exdistrfor  1780  uniin  3792  copsexg  4203  dmin  4791  imadif  5247  imainlem  5248
  Copyright terms: Public domain W3C validator