ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.40 GIF version

Theorem 19.40 1677
Description: Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
19.40 (∃𝑥(𝜑𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓))

Proof of Theorem 19.40
StepHypRef Expression
1 exsimpl 1663 . 2 (∃𝑥(𝜑𝜓) → ∃𝑥𝜑)
2 simpr 110 . . 3 ((𝜑𝜓) → 𝜓)
32eximi 1646 . 2 (∃𝑥(𝜑𝜓) → ∃𝑥𝜓)
41, 3jca 306 1 (∃𝑥(𝜑𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-ial 1580
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  19.40-2  1678  19.41h  1731  19.41  1732  exdistrfor  1846  uniin  3907  copsexg  4329  dmin  4930  imadif  5400  imainlem  5401
  Copyright terms: Public domain W3C validator