![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 19.40 | GIF version |
Description: Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
19.40 | ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exsimpl 1628 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜑) | |
2 | simpr 110 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
3 | 2 | eximi 1611 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜓) |
4 | 1, 3 | jca 306 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 19.40-2 1643 19.41h 1696 19.41 1697 exdistrfor 1811 uniin 3855 copsexg 4273 dmin 4870 imadif 5334 imainlem 5335 |
Copyright terms: Public domain | W3C validator |