| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.40 | GIF version | ||
| Description: Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 19.40 | ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exsimpl 1631 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜑) | |
| 2 | simpr 110 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 3 | 2 | eximi 1614 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜓) |
| 4 | 1, 3 | jca 306 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 19.40-2 1646 19.41h 1699 19.41 1700 exdistrfor 1814 uniin 3859 copsexg 4277 dmin 4874 imadif 5338 imainlem 5339 |
| Copyright terms: Public domain | W3C validator |