| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3an1rs | GIF version | ||
| Description: Swap conjuncts. (Contributed by NM, 16-Dec-2007.) |
| Ref | Expression |
|---|---|
| 3an1rs.1 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| 3an1rs | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜃) ∧ 𝜒) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3an1rs.1 | . . . . . 6 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 2 | 1 | ex 115 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) |
| 3 | 2 | 3exp 1204 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| 4 | 3 | com34 83 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜃 → (𝜒 → 𝜏)))) |
| 5 | 4 | 3imp 1195 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → (𝜒 → 𝜏)) |
| 6 | 5 | imp 124 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜃) ∧ 𝜒) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |