Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > com34 | GIF version |
Description: Commutation of antecedents. Swap 3rd and 4th. (Contributed by NM, 25-Apr-1994.) |
Ref | Expression |
---|---|
com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
com34 | ⊢ (𝜑 → (𝜓 → (𝜃 → (𝜒 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com4.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | pm2.04 82 | . 2 ⊢ ((𝜒 → (𝜃 → 𝜏)) → (𝜃 → (𝜒 → 𝜏))) | |
3 | 1, 2 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 → (𝜒 → 𝜏)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com4l 84 com35 90 3an1rs 1214 rspct 2827 po2nr 4294 funssres 5240 f1ocnv2d 6053 tfrlem9 6298 nnmass 6466 nnmordi 6495 genpcdl 7481 genpcuu 7482 mulnqprl 7530 mulnqpru 7531 distrlem1prl 7544 distrlem1pru 7545 divgt0 8788 divge0 8789 uzind2 9324 facdiv 10672 dvdsabseq 11807 divgcdcoprm0 12055 |
Copyright terms: Public domain | W3C validator |