ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  com34 GIF version

Theorem com34 83
Description: Commutation of antecedents. Swap 3rd and 4th. (Contributed by NM, 25-Apr-1994.)
Hypothesis
Ref Expression
com4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
com34 (𝜑 → (𝜓 → (𝜃 → (𝜒𝜏))))

Proof of Theorem com34
StepHypRef Expression
1 com4.1 . 2 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
2 pm2.04 82 . 2 ((𝜒 → (𝜃𝜏)) → (𝜃 → (𝜒𝜏)))
31, 2syl6 33 1 (𝜑 → (𝜓 → (𝜃 → (𝜒𝜏))))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  com4l  84  com35  90  3an1rs  1222  rspct  2874  po2nr  4363  funssres  5321  f1ocnv2d  6162  tfrlem9  6417  nnmass  6585  nnmordi  6614  genpcdl  7647  genpcuu  7648  mulnqprl  7696  mulnqpru  7697  distrlem1prl  7710  distrlem1pru  7711  divgt0  8960  divge0  8961  uzind2  9500  facdiv  10900  swrdswrdlem  11175  wrd2ind  11194  dvdsabseq  12228  divgcdcoprm0  12493  lmodvsdi  14143
  Copyright terms: Public domain W3C validator