ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  com34 GIF version

Theorem com34 83
Description: Commutation of antecedents. Swap 3rd and 4th. (Contributed by NM, 25-Apr-1994.)
Hypothesis
Ref Expression
com4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
com34 (𝜑 → (𝜓 → (𝜃 → (𝜒𝜏))))

Proof of Theorem com34
StepHypRef Expression
1 com4.1 . 2 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
2 pm2.04 82 . 2 ((𝜒 → (𝜃𝜏)) → (𝜃 → (𝜒𝜏)))
31, 2syl6 33 1 (𝜑 → (𝜓 → (𝜃 → (𝜒𝜏))))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  com4l  84  com35  90  3an1rs  1221  rspct  2861  po2nr  4345  funssres  5301  f1ocnv2d  6131  tfrlem9  6386  nnmass  6554  nnmordi  6583  genpcdl  7603  genpcuu  7604  mulnqprl  7652  mulnqpru  7653  distrlem1prl  7666  distrlem1pru  7667  divgt0  8916  divge0  8917  uzind2  9455  facdiv  10847  dvdsabseq  12029  divgcdcoprm0  12294  lmodvsdi  13943
  Copyright terms: Public domain W3C validator