| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > com34 | GIF version | ||
| Description: Commutation of antecedents. Swap 3rd and 4th. (Contributed by NM, 25-Apr-1994.) |
| Ref | Expression |
|---|---|
| com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| com34 | ⊢ (𝜑 → (𝜓 → (𝜃 → (𝜒 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com4.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | pm2.04 82 | . 2 ⊢ ((𝜒 → (𝜃 → 𝜏)) → (𝜃 → (𝜒 → 𝜏))) | |
| 3 | 1, 2 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 → (𝜒 → 𝜏)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com4l 84 com35 90 3an1rs 1221 rspct 2861 po2nr 4344 funssres 5300 f1ocnv2d 6127 tfrlem9 6377 nnmass 6545 nnmordi 6574 genpcdl 7586 genpcuu 7587 mulnqprl 7635 mulnqpru 7636 distrlem1prl 7649 distrlem1pru 7650 divgt0 8899 divge0 8900 uzind2 9438 facdiv 10830 dvdsabseq 12012 divgcdcoprm0 12269 lmodvsdi 13867 |
| Copyright terms: Public domain | W3C validator |