ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  com34 GIF version

Theorem com34 83
Description: Commutation of antecedents. Swap 3rd and 4th. (Contributed by NM, 25-Apr-1994.)
Hypothesis
Ref Expression
com4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
com34 (𝜑 → (𝜓 → (𝜃 → (𝜒𝜏))))

Proof of Theorem com34
StepHypRef Expression
1 com4.1 . 2 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
2 pm2.04 82 . 2 ((𝜒 → (𝜃𝜏)) → (𝜃 → (𝜒𝜏)))
31, 2syl6 33 1 (𝜑 → (𝜓 → (𝜃 → (𝜒𝜏))))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  com4l  84  com35  90  3an1rs  1221  rspct  2858  po2nr  4341  funssres  5297  f1ocnv2d  6124  tfrlem9  6374  nnmass  6542  nnmordi  6571  genpcdl  7581  genpcuu  7582  mulnqprl  7630  mulnqpru  7631  distrlem1prl  7644  distrlem1pru  7645  divgt0  8893  divge0  8894  uzind2  9432  facdiv  10812  dvdsabseq  11992  divgcdcoprm0  12242  lmodvsdi  13810
  Copyright terms: Public domain W3C validator