ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  com34 GIF version

Theorem com34 83
Description: Commutation of antecedents. Swap 3rd and 4th. (Contributed by NM, 25-Apr-1994.)
Hypothesis
Ref Expression
com4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
com34 (𝜑 → (𝜓 → (𝜃 → (𝜒𝜏))))

Proof of Theorem com34
StepHypRef Expression
1 com4.1 . 2 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
2 pm2.04 82 . 2 ((𝜒 → (𝜃𝜏)) → (𝜃 → (𝜒𝜏)))
31, 2syl6 33 1 (𝜑 → (𝜓 → (𝜃 → (𝜒𝜏))))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  com4l  84  com35  90  3an1rs  1209  rspct  2823  po2nr  4287  funssres  5230  f1ocnv2d  6042  tfrlem9  6287  nnmass  6455  nnmordi  6484  genpcdl  7460  genpcuu  7461  mulnqprl  7509  mulnqpru  7510  distrlem1prl  7523  distrlem1pru  7524  divgt0  8767  divge0  8768  uzind2  9303  facdiv  10651  dvdsabseq  11785  divgcdcoprm0  12033
  Copyright terms: Public domain W3C validator