| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > com34 | GIF version | ||
| Description: Commutation of antecedents. Swap 3rd and 4th. (Contributed by NM, 25-Apr-1994.) |
| Ref | Expression |
|---|---|
| com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| com34 | ⊢ (𝜑 → (𝜓 → (𝜃 → (𝜒 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com4.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | pm2.04 82 | . 2 ⊢ ((𝜒 → (𝜃 → 𝜏)) → (𝜃 → (𝜒 → 𝜏))) | |
| 3 | 1, 2 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 → (𝜒 → 𝜏)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com4l 84 com35 90 3an1rs 1243 rspct 2900 po2nr 4397 funssres 5356 f1ocnv2d 6200 tfrlem9 6455 nnmass 6623 nnmordi 6652 genpcdl 7694 genpcuu 7695 mulnqprl 7743 mulnqpru 7744 distrlem1prl 7757 distrlem1pru 7758 divgt0 9007 divge0 9008 uzind2 9547 facdiv 10947 swrdswrdlem 11222 wrd2ind 11241 dvdsabseq 12344 divgcdcoprm0 12609 lmodvsdi 14260 |
| Copyright terms: Public domain | W3C validator |