Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > com34 | GIF version |
Description: Commutation of antecedents. Swap 3rd and 4th. (Contributed by NM, 25-Apr-1994.) |
Ref | Expression |
---|---|
com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
com34 | ⊢ (𝜑 → (𝜓 → (𝜃 → (𝜒 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com4.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | pm2.04 82 | . 2 ⊢ ((𝜒 → (𝜃 → 𝜏)) → (𝜃 → (𝜒 → 𝜏))) | |
3 | 1, 2 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 → (𝜒 → 𝜏)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com4l 84 com35 90 3an1rs 1209 rspct 2823 po2nr 4287 funssres 5230 f1ocnv2d 6042 tfrlem9 6287 nnmass 6455 nnmordi 6484 genpcdl 7460 genpcuu 7461 mulnqprl 7509 mulnqpru 7510 distrlem1prl 7523 distrlem1pru 7524 divgt0 8767 divge0 8768 uzind2 9303 facdiv 10651 dvdsabseq 11785 divgcdcoprm0 12033 |
Copyright terms: Public domain | W3C validator |