| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > com34 | GIF version | ||
| Description: Commutation of antecedents. Swap 3rd and 4th. (Contributed by NM, 25-Apr-1994.) |
| Ref | Expression |
|---|---|
| com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| com34 | ⊢ (𝜑 → (𝜓 → (𝜃 → (𝜒 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com4.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | pm2.04 82 | . 2 ⊢ ((𝜒 → (𝜃 → 𝜏)) → (𝜃 → (𝜒 → 𝜏))) | |
| 3 | 1, 2 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 → (𝜒 → 𝜏)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com4l 84 com35 90 3an1rs 1222 rspct 2874 po2nr 4363 funssres 5321 f1ocnv2d 6162 tfrlem9 6417 nnmass 6585 nnmordi 6614 genpcdl 7647 genpcuu 7648 mulnqprl 7696 mulnqpru 7697 distrlem1prl 7710 distrlem1pru 7711 divgt0 8960 divge0 8961 uzind2 9500 facdiv 10900 swrdswrdlem 11175 wrd2ind 11194 dvdsabseq 12228 divgcdcoprm0 12493 lmodvsdi 14143 |
| Copyright terms: Public domain | W3C validator |