ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  com34 GIF version

Theorem com34 83
Description: Commutation of antecedents. Swap 3rd and 4th. (Contributed by NM, 25-Apr-1994.)
Hypothesis
Ref Expression
com4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
com34 (𝜑 → (𝜓 → (𝜃 → (𝜒𝜏))))

Proof of Theorem com34
StepHypRef Expression
1 com4.1 . 2 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
2 pm2.04 82 . 2 ((𝜒 → (𝜃𝜏)) → (𝜃 → (𝜒𝜏)))
31, 2syl6 33 1 (𝜑 → (𝜓 → (𝜃 → (𝜒𝜏))))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  com4l  84  com35  90  3an1rs  1221  rspct  2861  po2nr  4344  funssres  5300  f1ocnv2d  6127  tfrlem9  6377  nnmass  6545  nnmordi  6574  genpcdl  7586  genpcuu  7587  mulnqprl  7635  mulnqpru  7636  distrlem1prl  7649  distrlem1pru  7650  divgt0  8899  divge0  8900  uzind2  9438  facdiv  10830  dvdsabseq  12012  divgcdcoprm0  12269  lmodvsdi  13867
  Copyright terms: Public domain W3C validator