| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > com34 | GIF version | ||
| Description: Commutation of antecedents. Swap 3rd and 4th. (Contributed by NM, 25-Apr-1994.) |
| Ref | Expression |
|---|---|
| com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| com34 | ⊢ (𝜑 → (𝜓 → (𝜃 → (𝜒 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com4.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | pm2.04 82 | . 2 ⊢ ((𝜒 → (𝜃 → 𝜏)) → (𝜃 → (𝜒 → 𝜏))) | |
| 3 | 1, 2 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 → (𝜒 → 𝜏)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com4l 84 com35 90 3an1rs 1243 rspct 2900 po2nr 4400 funssres 5360 f1ocnv2d 6216 tfrlem9 6471 nnmass 6641 nnmordi 6670 genpcdl 7714 genpcuu 7715 mulnqprl 7763 mulnqpru 7764 distrlem1prl 7777 distrlem1pru 7778 divgt0 9027 divge0 9028 uzind2 9567 facdiv 10968 swrdswrdlem 11244 wrd2ind 11263 dvdsabseq 12366 divgcdcoprm0 12631 lmodvsdi 14283 |
| Copyright terms: Public domain | W3C validator |