| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > com34 | GIF version | ||
| Description: Commutation of antecedents. Swap 3rd and 4th. (Contributed by NM, 25-Apr-1994.) |
| Ref | Expression |
|---|---|
| com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| com34 | ⊢ (𝜑 → (𝜓 → (𝜃 → (𝜒 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com4.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | pm2.04 82 | . 2 ⊢ ((𝜒 → (𝜃 → 𝜏)) → (𝜃 → (𝜒 → 𝜏))) | |
| 3 | 1, 2 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 → (𝜒 → 𝜏)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com4l 84 com35 90 3an1rs 1221 rspct 2861 po2nr 4345 funssres 5301 f1ocnv2d 6131 tfrlem9 6386 nnmass 6554 nnmordi 6583 genpcdl 7605 genpcuu 7606 mulnqprl 7654 mulnqpru 7655 distrlem1prl 7668 distrlem1pru 7669 divgt0 8918 divge0 8919 uzind2 9457 facdiv 10849 dvdsabseq 12031 divgcdcoprm0 12296 lmodvsdi 13945 |
| Copyright terms: Public domain | W3C validator |