ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  com34 GIF version

Theorem com34 83
Description: Commutation of antecedents. Swap 3rd and 4th. (Contributed by NM, 25-Apr-1994.)
Hypothesis
Ref Expression
com4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
com34 (𝜑 → (𝜓 → (𝜃 → (𝜒𝜏))))

Proof of Theorem com34
StepHypRef Expression
1 com4.1 . 2 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
2 pm2.04 82 . 2 ((𝜒 → (𝜃𝜏)) → (𝜃 → (𝜒𝜏)))
31, 2syl6 33 1 (𝜑 → (𝜓 → (𝜃 → (𝜒𝜏))))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  com4l  84  com35  90  3an1rs  1243  rspct  2900  po2nr  4397  funssres  5356  f1ocnv2d  6200  tfrlem9  6455  nnmass  6623  nnmordi  6652  genpcdl  7694  genpcuu  7695  mulnqprl  7743  mulnqpru  7744  distrlem1prl  7757  distrlem1pru  7758  divgt0  9007  divge0  9008  uzind2  9547  facdiv  10947  swrdswrdlem  11222  wrd2ind  11241  dvdsabseq  12344  divgcdcoprm0  12609  lmodvsdi  14260
  Copyright terms: Public domain W3C validator