![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > com34 | GIF version |
Description: Commutation of antecedents. Swap 3rd and 4th. (Contributed by NM, 25-Apr-1994.) |
Ref | Expression |
---|---|
com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
com34 | ⊢ (𝜑 → (𝜓 → (𝜃 → (𝜒 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com4.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | pm2.04 82 | . 2 ⊢ ((𝜒 → (𝜃 → 𝜏)) → (𝜃 → (𝜒 → 𝜏))) | |
3 | 1, 2 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 → (𝜒 → 𝜏)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com4l 84 com35 90 3an1rs 1221 rspct 2857 po2nr 4340 funssres 5296 f1ocnv2d 6122 tfrlem9 6372 nnmass 6540 nnmordi 6569 genpcdl 7579 genpcuu 7580 mulnqprl 7628 mulnqpru 7629 distrlem1prl 7642 distrlem1pru 7643 divgt0 8891 divge0 8892 uzind2 9429 facdiv 10809 dvdsabseq 11989 divgcdcoprm0 12239 lmodvsdi 13807 |
Copyright terms: Public domain | W3C validator |