ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3an1rs Unicode version

Theorem 3an1rs 1219
Description: Swap conjuncts. (Contributed by NM, 16-Dec-2007.)
Hypothesis
Ref Expression
3an1rs.1  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  ta )
Assertion
Ref Expression
3an1rs  |-  ( ( ( ph  /\  ps  /\ 
th )  /\  ch )  ->  ta )

Proof of Theorem 3an1rs
StepHypRef Expression
1 3an1rs.1 . . . . . 6  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  ta )
21ex 115 . . . . 5  |-  ( (
ph  /\  ps  /\  ch )  ->  ( th  ->  ta ) )
323exp 1202 . . . 4  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
43com34 83 . . 3  |-  ( ph  ->  ( ps  ->  ( th  ->  ( ch  ->  ta ) ) ) )
543imp 1193 . 2  |-  ( (
ph  /\  ps  /\  th )  ->  ( ch  ->  ta ) )
65imp 124 1  |-  ( ( ( ph  /\  ps  /\ 
th )  /\  ch )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 980
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator