ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anbi23d GIF version

Theorem 3anbi23d 1305
Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.)
Hypotheses
Ref Expression
3anbi12d.1 (𝜑 → (𝜓𝜒))
3anbi12d.2 (𝜑 → (𝜃𝜏))
Assertion
Ref Expression
3anbi23d (𝜑 → ((𝜂𝜓𝜃) ↔ (𝜂𝜒𝜏)))

Proof of Theorem 3anbi23d
StepHypRef Expression
1 biidd 171 . 2 (𝜑 → (𝜂𝜂))
2 3anbi12d.1 . 2 (𝜑 → (𝜓𝜒))
3 3anbi12d.2 . 2 (𝜑 → (𝜃𝜏))
41, 2, 33anbi123d 1302 1 (𝜑 → ((𝜂𝜓𝜃) ↔ (𝜂𝜒𝜏)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  ltxrlt  7964  dfgcd2  11947
  Copyright terms: Public domain W3C validator