| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biidd | GIF version | ||
| Description: Principle of identity with antecedent. (Contributed by NM, 25-Nov-1995.) |
| Ref | Expression |
|---|---|
| biidd | ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 171 | . 2 ⊢ (𝜓 ↔ 𝜓) | |
| 2 | 1 | a1i 9 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ifpbi23d 999 3anbi12d 1347 3anbi13d 1348 3anbi23d 1349 3anbi1d 1350 3anbi2d 1351 3anbi3d 1352 sb6x 1825 exdistrfor 1846 a16g 1910 rr19.3v 2942 rr19.28v 2943 euxfr2dc 2988 dfif3 3616 undifexmid 4276 exmidexmid 4279 exmidsssnc 4286 copsexg 4329 ordtriexmidlem2 4611 ordtriexmid 4612 ontriexmidim 4613 ordtri2orexmid 4614 ontr2exmid 4616 ordtri2or2exmidlem 4617 onsucsssucexmid 4618 ordsoexmid 4653 0elsucexmid 4656 ordpwsucexmid 4661 ordtri2or2exmid 4662 ontri2orexmidim 4663 dcextest 4672 riotabidv 5955 ov6g 6142 ovg 6143 dfxp3 6338 ssfilem 7033 diffitest 7045 inffiexmid 7064 unfiexmid 7076 snexxph 7113 ctssexmid 7313 exmidonfinlem 7367 ltsopi 7503 pitri3or 7505 creur 9102 creui 9103 pceu 12813 2irrexpqap 15646 subctctexmid 16325 |
| Copyright terms: Public domain | W3C validator |