| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biidd | GIF version | ||
| Description: Principle of identity with antecedent. (Contributed by NM, 25-Nov-1995.) |
| Ref | Expression |
|---|---|
| biidd | ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 171 | . 2 ⊢ (𝜓 ↔ 𝜓) | |
| 2 | 1 | a1i 9 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3anbi12d 1324 3anbi13d 1325 3anbi23d 1326 3anbi1d 1327 3anbi2d 1328 3anbi3d 1329 sb6x 1793 exdistrfor 1814 a16g 1878 rr19.3v 2903 rr19.28v 2904 euxfr2dc 2949 dfif3 3575 undifexmid 4227 exmidexmid 4230 exmidsssnc 4237 copsexg 4278 ordtriexmidlem2 4557 ordtriexmid 4558 ontriexmidim 4559 ordtri2orexmid 4560 ontr2exmid 4562 ordtri2or2exmidlem 4563 onsucsssucexmid 4564 ordsoexmid 4599 0elsucexmid 4602 ordpwsucexmid 4607 ordtri2or2exmid 4608 ontri2orexmidim 4609 dcextest 4618 riotabidv 5880 ov6g 6062 ovg 6063 dfxp3 6253 ssfilem 6937 diffitest 6949 inffiexmid 6968 unfiexmid 6980 snexxph 7017 ctssexmid 7217 exmidonfinlem 7262 ltsopi 7389 pitri3or 7391 creur 8988 creui 8989 pceu 12474 2irrexpqap 15224 subctctexmid 15655 |
| Copyright terms: Public domain | W3C validator |