![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biidd | GIF version |
Description: Principle of identity with antecedent. (Contributed by NM, 25-Nov-1995.) |
Ref | Expression |
---|---|
biidd | ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 171 | . 2 ⊢ (𝜓 ↔ 𝜓) | |
2 | 1 | a1i 9 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3anbi12d 1324 3anbi13d 1325 3anbi23d 1326 3anbi1d 1327 3anbi2d 1328 3anbi3d 1329 sb6x 1790 exdistrfor 1811 a16g 1875 rr19.3v 2899 rr19.28v 2900 euxfr2dc 2945 dfif3 3570 undifexmid 4222 exmidexmid 4225 exmidsssnc 4232 copsexg 4273 ordtriexmidlem2 4552 ordtriexmid 4553 ontriexmidim 4554 ordtri2orexmid 4555 ontr2exmid 4557 ordtri2or2exmidlem 4558 onsucsssucexmid 4559 ordsoexmid 4594 0elsucexmid 4597 ordpwsucexmid 4602 ordtri2or2exmid 4603 ontri2orexmidim 4604 dcextest 4613 riotabidv 5875 ov6g 6056 ovg 6057 dfxp3 6247 ssfilem 6931 diffitest 6943 inffiexmid 6962 unfiexmid 6974 snexxph 7009 ctssexmid 7209 exmidonfinlem 7253 ltsopi 7380 pitri3or 7382 creur 8978 creui 8979 pceu 12433 2irrexpqap 15110 subctctexmid 15491 |
Copyright terms: Public domain | W3C validator |