| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biidd | GIF version | ||
| Description: Principle of identity with antecedent. (Contributed by NM, 25-Nov-1995.) |
| Ref | Expression |
|---|---|
| biidd | ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 171 | . 2 ⊢ (𝜓 ↔ 𝜓) | |
| 2 | 1 | a1i 9 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3anbi12d 1326 3anbi13d 1327 3anbi23d 1328 3anbi1d 1329 3anbi2d 1330 3anbi3d 1331 sb6x 1803 exdistrfor 1824 a16g 1888 rr19.3v 2916 rr19.28v 2917 euxfr2dc 2962 dfif3 3588 undifexmid 4244 exmidexmid 4247 exmidsssnc 4254 copsexg 4295 ordtriexmidlem2 4575 ordtriexmid 4576 ontriexmidim 4577 ordtri2orexmid 4578 ontr2exmid 4580 ordtri2or2exmidlem 4581 onsucsssucexmid 4582 ordsoexmid 4617 0elsucexmid 4620 ordpwsucexmid 4625 ordtri2or2exmid 4626 ontri2orexmidim 4627 dcextest 4636 riotabidv 5913 ov6g 6096 ovg 6097 dfxp3 6292 ssfilem 6986 diffitest 6998 inffiexmid 7017 unfiexmid 7029 snexxph 7066 ctssexmid 7266 exmidonfinlem 7316 ltsopi 7448 pitri3or 7450 creur 9047 creui 9048 pceu 12688 2irrexpqap 15520 subctctexmid 16072 |
| Copyright terms: Public domain | W3C validator |