Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biidd | GIF version |
Description: Principle of identity with antecedent. (Contributed by NM, 25-Nov-1995.) |
Ref | Expression |
---|---|
biidd | ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 170 | . 2 ⊢ (𝜓 ↔ 𝜓) | |
2 | 1 | a1i 9 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3anbi12d 1303 3anbi13d 1304 3anbi23d 1305 3anbi1d 1306 3anbi2d 1307 3anbi3d 1308 sb6x 1767 exdistrfor 1788 a16g 1852 rr19.3v 2864 rr19.28v 2865 euxfr2dc 2910 dfif3 3532 undifexmid 4171 exmidexmid 4174 exmidsssnc 4181 copsexg 4221 ordtriexmidlem2 4496 ordtriexmid 4497 ontriexmidim 4498 ordtri2orexmid 4499 ontr2exmid 4501 ordtri2or2exmidlem 4502 onsucsssucexmid 4503 ordsoexmid 4538 0elsucexmid 4541 ordpwsucexmid 4546 ordtri2or2exmid 4547 ontri2orexmidim 4548 dcextest 4557 riotabidv 5799 ov6g 5975 ovg 5976 dfxp3 6159 ssfilem 6837 diffitest 6849 inffiexmid 6868 unfiexmid 6879 snexxph 6911 ctssexmid 7110 exmidonfinlem 7145 ltsopi 7257 pitri3or 7259 creur 8850 creui 8851 pceu 12223 2irrexpqap 13496 subctctexmid 13841 |
Copyright terms: Public domain | W3C validator |