Step | Hyp | Ref
| Expression |
1 | | gcdcl 11899 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈
ℕ0) |
2 | 1 | nn0ge0d 9170 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 0 ≤
(𝑀 gcd 𝑁)) |
3 | | gcddvds 11896 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) |
4 | | 3anass 972 |
. . . . . . . 8
⊢ ((𝑒 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ (𝑒 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈
ℤ))) |
5 | | ancom 264 |
. . . . . . . 8
⊢ ((𝑒 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑒 ∈
ℤ)) |
6 | 4, 5 | bitri 183 |
. . . . . . 7
⊢ ((𝑒 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑒 ∈
ℤ)) |
7 | | dvdsgcd 11945 |
. . . . . . 7
⊢ ((𝑒 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ (𝑀 gcd 𝑁))) |
8 | 6, 7 | sylbir 134 |
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑒 ∈ ℤ) → ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ (𝑀 gcd 𝑁))) |
9 | 8 | ralrimiva 2539 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
∀𝑒 ∈ ℤ
((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ (𝑀 gcd 𝑁))) |
10 | 2, 3, 9 | 3jca 1167 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ≤
(𝑀 gcd 𝑁) ∧ ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ (𝑀 gcd 𝑁)))) |
11 | 10 | adantr 274 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐷 = (𝑀 gcd 𝑁)) → (0 ≤ (𝑀 gcd 𝑁) ∧ ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ (𝑀 gcd 𝑁)))) |
12 | | breq2 3986 |
. . . . 5
⊢ (𝐷 = (𝑀 gcd 𝑁) → (0 ≤ 𝐷 ↔ 0 ≤ (𝑀 gcd 𝑁))) |
13 | | breq1 3985 |
. . . . . 6
⊢ (𝐷 = (𝑀 gcd 𝑁) → (𝐷 ∥ 𝑀 ↔ (𝑀 gcd 𝑁) ∥ 𝑀)) |
14 | | breq1 3985 |
. . . . . 6
⊢ (𝐷 = (𝑀 gcd 𝑁) → (𝐷 ∥ 𝑁 ↔ (𝑀 gcd 𝑁) ∥ 𝑁)) |
15 | 13, 14 | anbi12d 465 |
. . . . 5
⊢ (𝐷 = (𝑀 gcd 𝑁) → ((𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ↔ ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))) |
16 | | breq2 3986 |
. . . . . . 7
⊢ (𝐷 = (𝑀 gcd 𝑁) → (𝑒 ∥ 𝐷 ↔ 𝑒 ∥ (𝑀 gcd 𝑁))) |
17 | 16 | imbi2d 229 |
. . . . . 6
⊢ (𝐷 = (𝑀 gcd 𝑁) → (((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷) ↔ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ (𝑀 gcd 𝑁)))) |
18 | 17 | ralbidv 2466 |
. . . . 5
⊢ (𝐷 = (𝑀 gcd 𝑁) → (∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷) ↔ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ (𝑀 gcd 𝑁)))) |
19 | 12, 15, 18 | 3anbi123d 1302 |
. . . 4
⊢ (𝐷 = (𝑀 gcd 𝑁) → ((0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)) ↔ (0 ≤ (𝑀 gcd 𝑁) ∧ ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ (𝑀 gcd 𝑁))))) |
20 | 19 | adantl 275 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐷 = (𝑀 gcd 𝑁)) → ((0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)) ↔ (0 ≤ (𝑀 gcd 𝑁) ∧ ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ (𝑀 gcd 𝑁))))) |
21 | 11, 20 | mpbird 166 |
. 2
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐷 = (𝑀 gcd 𝑁)) → (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷))) |
22 | | gcdval 11892 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ))) |
23 | 22 | adantr 274 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷))) → (𝑀 gcd 𝑁) = if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ))) |
24 | | iftrue 3525 |
. . . . . . 7
⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < )) = 0) |
25 | 24 | adantr 274 |
. . . . . 6
⊢ (((𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) → if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < )) = 0) |
26 | | breq2 3986 |
. . . . . . . . . . 11
⊢ (𝑀 = 0 → (𝐷 ∥ 𝑀 ↔ 𝐷 ∥ 0)) |
27 | | breq2 3986 |
. . . . . . . . . . 11
⊢ (𝑁 = 0 → (𝐷 ∥ 𝑁 ↔ 𝐷 ∥ 0)) |
28 | 26, 27 | bi2anan9 596 |
. . . . . . . . . 10
⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → ((𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ↔ (𝐷 ∥ 0 ∧ 𝐷 ∥ 0))) |
29 | | breq2 3986 |
. . . . . . . . . . . . 13
⊢ (𝑀 = 0 → (𝑒 ∥ 𝑀 ↔ 𝑒 ∥ 0)) |
30 | | breq2 3986 |
. . . . . . . . . . . . 13
⊢ (𝑁 = 0 → (𝑒 ∥ 𝑁 ↔ 𝑒 ∥ 0)) |
31 | 29, 30 | bi2anan9 596 |
. . . . . . . . . . . 12
⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) ↔ (𝑒 ∥ 0 ∧ 𝑒 ∥ 0))) |
32 | 31 | imbi1d 230 |
. . . . . . . . . . 11
⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → (((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷) ↔ ((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒 ∥ 𝐷))) |
33 | 32 | ralbidv 2466 |
. . . . . . . . . 10
⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → (∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷) ↔ ∀𝑒 ∈ ℤ ((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒 ∥ 𝐷))) |
34 | 28, 33 | 3anbi23d 1305 |
. . . . . . . . 9
⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → ((0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)) ↔ (0 ≤ 𝐷 ∧ (𝐷 ∥ 0 ∧ 𝐷 ∥ 0) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒 ∥ 𝐷)))) |
35 | | dvdszrcl 11732 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∥ 0 → (𝐷 ∈ ℤ ∧ 0 ∈
ℤ)) |
36 | | dvds0 11746 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑒 ∈ ℤ → 𝑒 ∥ 0) |
37 | 36, 36 | jca 304 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑒 ∈ ℤ → (𝑒 ∥ 0 ∧ 𝑒 ∥ 0)) |
38 | 37 | adantl 275 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐷 ∈ ℤ ∧ 0 ≤
𝐷) ∧ 𝑒 ∈ ℤ) → (𝑒 ∥ 0 ∧ 𝑒 ∥ 0)) |
39 | | pm5.5 241 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → (((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒 ∥ 𝐷) ↔ 𝑒 ∥ 𝐷)) |
40 | 38, 39 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐷 ∈ ℤ ∧ 0 ≤
𝐷) ∧ 𝑒 ∈ ℤ) → (((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒 ∥ 𝐷) ↔ 𝑒 ∥ 𝐷)) |
41 | 40 | ralbidva 2462 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐷 ∈ ℤ ∧ 0 ≤
𝐷) → (∀𝑒 ∈ ℤ ((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒 ∥ 𝐷) ↔ ∀𝑒 ∈ ℤ 𝑒 ∥ 𝐷)) |
42 | | 0z 9202 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ∈
ℤ |
43 | | breq1 3985 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑒 = 0 → (𝑒 ∥ 𝐷 ↔ 0 ∥ 𝐷)) |
44 | 43 | rspcv 2826 |
. . . . . . . . . . . . . . . . . . 19
⊢ (0 ∈
ℤ → (∀𝑒
∈ ℤ 𝑒 ∥
𝐷 → 0 ∥ 𝐷)) |
45 | 42, 44 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑒 ∈
ℤ 𝑒 ∥ 𝐷 → 0 ∥ 𝐷) |
46 | | 0dvds 11751 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐷 ∈ ℤ → (0
∥ 𝐷 ↔ 𝐷 = 0)) |
47 | 46 | biimpd 143 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐷 ∈ ℤ → (0
∥ 𝐷 → 𝐷 = 0)) |
48 | | eqcom 2167 |
. . . . . . . . . . . . . . . . . . 19
⊢ (0 =
𝐷 ↔ 𝐷 = 0) |
49 | 47, 48 | syl6ibr 161 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐷 ∈ ℤ → (0
∥ 𝐷 → 0 = 𝐷)) |
50 | 45, 49 | syl5 32 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐷 ∈ ℤ →
(∀𝑒 ∈ ℤ
𝑒 ∥ 𝐷 → 0 = 𝐷)) |
51 | 50 | adantr 274 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐷 ∈ ℤ ∧ 0 ≤
𝐷) → (∀𝑒 ∈ ℤ 𝑒 ∥ 𝐷 → 0 = 𝐷)) |
52 | 41, 51 | sylbid 149 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷 ∈ ℤ ∧ 0 ≤
𝐷) → (∀𝑒 ∈ ℤ ((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒 ∥ 𝐷) → 0 = 𝐷)) |
53 | 52 | ex 114 |
. . . . . . . . . . . . . 14
⊢ (𝐷 ∈ ℤ → (0 ≤
𝐷 → (∀𝑒 ∈ ℤ ((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒 ∥ 𝐷) → 0 = 𝐷))) |
54 | 53 | adantr 274 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ ℤ ∧ 0 ∈
ℤ) → (0 ≤ 𝐷
→ (∀𝑒 ∈
ℤ ((𝑒 ∥ 0 ∧
𝑒 ∥ 0) → 𝑒 ∥ 𝐷) → 0 = 𝐷))) |
55 | 35, 54 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝐷 ∥ 0 → (0 ≤ 𝐷 → (∀𝑒 ∈ ℤ ((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒 ∥ 𝐷) → 0 = 𝐷))) |
56 | 55 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝐷 ∥ 0 ∧ 𝐷 ∥ 0) → (0 ≤ 𝐷 → (∀𝑒 ∈ ℤ ((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒 ∥ 𝐷) → 0 = 𝐷))) |
57 | 56 | com12 30 |
. . . . . . . . . 10
⊢ (0 ≤
𝐷 → ((𝐷 ∥ 0 ∧ 𝐷 ∥ 0) →
(∀𝑒 ∈ ℤ
((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒 ∥ 𝐷) → 0 = 𝐷))) |
58 | 57 | 3imp 1183 |
. . . . . . . . 9
⊢ ((0 ≤
𝐷 ∧ (𝐷 ∥ 0 ∧ 𝐷 ∥ 0) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒 ∥ 𝐷)) → 0 = 𝐷) |
59 | 34, 58 | syl6bi 162 |
. . . . . . . 8
⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → ((0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)) → 0 = 𝐷)) |
60 | 59 | adantld 276 |
. . . . . . 7
⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷))) → 0 = 𝐷)) |
61 | 60 | imp 123 |
. . . . . 6
⊢ (((𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) → 0 = 𝐷) |
62 | 25, 61 | eqtrd 2198 |
. . . . 5
⊢ (((𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) → if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < )) = 𝐷) |
63 | 62 | ancoms 266 |
. . . 4
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷))) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < )) = 𝐷) |
64 | | iffalse 3528 |
. . . . . . 7
⊢ (¬
(𝑀 = 0 ∧ 𝑁 = 0) → if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < )) = sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < )) |
65 | 64 | adantr 274 |
. . . . . 6
⊢ ((¬
(𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) → if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < )) = sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < )) |
66 | | lttri3 7978 |
. . . . . . . 8
⊢ ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
67 | 66 | adantl 275 |
. . . . . . 7
⊢ (((¬
(𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
68 | | dvdszrcl 11732 |
. . . . . . . . . . . 12
⊢ (𝐷 ∥ 𝑀 → (𝐷 ∈ ℤ ∧ 𝑀 ∈ ℤ)) |
69 | 68 | simpld 111 |
. . . . . . . . . . 11
⊢ (𝐷 ∥ 𝑀 → 𝐷 ∈ ℤ) |
70 | 69 | zred 9313 |
. . . . . . . . . 10
⊢ (𝐷 ∥ 𝑀 → 𝐷 ∈ ℝ) |
71 | 70 | adantr 274 |
. . . . . . . . 9
⊢ ((𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) → 𝐷 ∈ ℝ) |
72 | 71 | 3ad2ant2 1009 |
. . . . . . . 8
⊢ ((0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)) → 𝐷 ∈ ℝ) |
73 | 72 | ad2antll 483 |
. . . . . . 7
⊢ ((¬
(𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) → 𝐷 ∈ ℝ) |
74 | | breq1 3985 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑦 → (𝑛 ∥ 𝑀 ↔ 𝑦 ∥ 𝑀)) |
75 | | breq1 3985 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑦 → (𝑛 ∥ 𝑁 ↔ 𝑦 ∥ 𝑁)) |
76 | 74, 75 | anbi12d 465 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑦 → ((𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁) ↔ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁))) |
77 | 76 | elrab 2882 |
. . . . . . . . 9
⊢ (𝑦 ∈ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)} ↔ (𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁))) |
78 | | breq1 3985 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑒 = 𝑦 → (𝑒 ∥ 𝑀 ↔ 𝑦 ∥ 𝑀)) |
79 | | breq1 3985 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑒 = 𝑦 → (𝑒 ∥ 𝑁 ↔ 𝑦 ∥ 𝑁)) |
80 | 78, 79 | anbi12d 465 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑒 = 𝑦 → ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) ↔ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁))) |
81 | | breq1 3985 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑒 = 𝑦 → (𝑒 ∥ 𝐷 ↔ 𝑦 ∥ 𝐷)) |
82 | 80, 81 | imbi12d 233 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑒 = 𝑦 → (((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷) ↔ ((𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁) → 𝑦 ∥ 𝐷))) |
83 | 82 | rspcv 2826 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ ℤ →
(∀𝑒 ∈ ℤ
((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷) → ((𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁) → 𝑦 ∥ 𝐷))) |
84 | 83 | com23 78 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ℤ → ((𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁) → (∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷) → 𝑦 ∥ 𝐷))) |
85 | 84 | imp 123 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) → (∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷) → 𝑦 ∥ 𝐷)) |
86 | 85 | ad2antrr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷) → 𝑦 ∥ 𝐷)) |
87 | | elnn0z 9204 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐷 ∈ ℕ0
↔ (𝐷 ∈ ℤ
∧ 0 ≤ 𝐷)) |
88 | 87 | simplbi2 383 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐷 ∈ ℤ → (0 ≤
𝐷 → 𝐷 ∈
ℕ0)) |
89 | 88 | adantr 274 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐷 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (0 ≤
𝐷 → 𝐷 ∈
ℕ0)) |
90 | 68, 89 | syl 14 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐷 ∥ 𝑀 → (0 ≤ 𝐷 → 𝐷 ∈
ℕ0)) |
91 | 90 | adantr 274 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) → (0 ≤ 𝐷 → 𝐷 ∈
ℕ0)) |
92 | 91 | impcom 124 |
. . . . . . . . . . . . . . . . 17
⊢ ((0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) → 𝐷 ∈
ℕ0) |
93 | | zre 9195 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ ℤ → 𝑦 ∈
ℝ) |
94 | 93 | ad2antrr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → 𝑦 ∈ ℝ) |
95 | 94 | ad2antrl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((0
≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) ∧ (𝑦 ∥ 𝐷 ∧ 𝐷 ∈ ℕ0)) ∧ (((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑦 ∈ ℝ) |
96 | 71 | ad3antlr 485 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((0
≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) ∧ (𝑦 ∥ 𝐷 ∧ 𝐷 ∈ ℕ0)) ∧ (((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝐷 ∈ ℝ) |
97 | | simp-5l 533 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑦 ∈
ℤ ∧ (𝑦 ∥
𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐷 ∈ ℕ0) ∧ (0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁))) → 𝑦 ∈ ℤ) |
98 | | elnn0 9116 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝐷 ∈ ℕ0
↔ (𝐷 ∈ ℕ
∨ 𝐷 =
0)) |
99 | | 2a1 25 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝐷 ∈ ℕ → ((((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) → 𝐷 ∈ ℕ))) |
100 | | breq1 3985 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝐷 = 0 → (𝐷 ∥ 𝑀 ↔ 0 ∥ 𝑀)) |
101 | | breq1 3985 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝐷 = 0 → (𝐷 ∥ 𝑁 ↔ 0 ∥ 𝑁)) |
102 | 100, 101 | anbi12d 465 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝐷 = 0 → ((𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ↔ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁))) |
103 | 102 | anbi2d 460 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝐷 = 0 → ((0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) ↔ (0 ≤ 𝐷 ∧ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁)))) |
104 | 103 | adantr 274 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝐷 = 0 ∧ (((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) ↔ (0 ≤ 𝐷 ∧ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁)))) |
105 | | simplr 520 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ¬ (𝑀 = 0 ∧ 𝑁 = 0)) |
106 | | zdceq 9266 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑀 ∈ ℤ ∧ 0 ∈
ℤ) → DECID 𝑀 = 0) |
107 | 42, 106 | mpan2 422 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑀 ∈ ℤ →
DECID 𝑀 =
0) |
108 | | ianordc 889 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
(DECID 𝑀 = 0 → (¬ (𝑀 = 0 ∧ 𝑁 = 0) ↔ (¬ 𝑀 = 0 ∨ ¬ 𝑁 = 0))) |
109 | 107, 108 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑀 ∈ ℤ → (¬
(𝑀 = 0 ∧ 𝑁 = 0) ↔ (¬ 𝑀 = 0 ∨ ¬ 𝑁 = 0))) |
110 | 109 | ad2antrl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) ↔ (¬ 𝑀 = 0 ∨ ¬ 𝑁 = 0))) |
111 | 105, 110 | mpbid 146 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (¬ 𝑀 = 0 ∨ ¬ 𝑁 = 0)) |
112 | | dvdszrcl 11732 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (0
∥ 𝑀 → (0 ∈
ℤ ∧ 𝑀 ∈
ℤ)) |
113 | | 0dvds 11751 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑀 ∈ ℤ → (0
∥ 𝑀 ↔ 𝑀 = 0)) |
114 | | pm2.24 611 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑀 = 0 → (¬ 𝑀 = 0 → 𝐷 ∈ ℕ)) |
115 | 113, 114 | syl6bi 162 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑀 ∈ ℤ → (0
∥ 𝑀 → (¬
𝑀 = 0 → 𝐷 ∈
ℕ))) |
116 | 115 | adantl 275 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((0
∈ ℤ ∧ 𝑀
∈ ℤ) → (0 ∥ 𝑀 → (¬ 𝑀 = 0 → 𝐷 ∈ ℕ))) |
117 | 112, 116 | mpcom 36 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (0
∥ 𝑀 → (¬
𝑀 = 0 → 𝐷 ∈
ℕ)) |
118 | 117 | adantr 274 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((0
∥ 𝑀 ∧ 0 ∥
𝑁) → (¬ 𝑀 = 0 → 𝐷 ∈ ℕ)) |
119 | 118 | com12 30 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (¬
𝑀 = 0 → ((0 ∥
𝑀 ∧ 0 ∥ 𝑁) → 𝐷 ∈ ℕ)) |
120 | | dvdszrcl 11732 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (0
∥ 𝑁 → (0 ∈
ℤ ∧ 𝑁 ∈
ℤ)) |
121 | | 0dvds 11751 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑁 ∈ ℤ → (0
∥ 𝑁 ↔ 𝑁 = 0)) |
122 | | pm2.24 611 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑁 = 0 → (¬ 𝑁 = 0 → 𝐷 ∈ ℕ)) |
123 | 121, 122 | syl6bi 162 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑁 ∈ ℤ → (0
∥ 𝑁 → (¬
𝑁 = 0 → 𝐷 ∈
ℕ))) |
124 | 123 | adantl 275 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((0
∈ ℤ ∧ 𝑁
∈ ℤ) → (0 ∥ 𝑁 → (¬ 𝑁 = 0 → 𝐷 ∈ ℕ))) |
125 | 120, 124 | mpcom 36 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (0
∥ 𝑁 → (¬
𝑁 = 0 → 𝐷 ∈
ℕ)) |
126 | 125 | adantl 275 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((0
∥ 𝑀 ∧ 0 ∥
𝑁) → (¬ 𝑁 = 0 → 𝐷 ∈ ℕ)) |
127 | 126 | com12 30 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (¬
𝑁 = 0 → ((0 ∥
𝑀 ∧ 0 ∥ 𝑁) → 𝐷 ∈ ℕ)) |
128 | 119, 127 | jaoi 706 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((¬
𝑀 = 0 ∨ ¬ 𝑁 = 0) → ((0 ∥ 𝑀 ∧ 0 ∥ 𝑁) → 𝐷 ∈ ℕ)) |
129 | 111, 128 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((0 ∥ 𝑀 ∧ 0 ∥ 𝑁) → 𝐷 ∈ ℕ)) |
130 | 129 | adantld 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((0 ≤ 𝐷 ∧ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁)) → 𝐷 ∈ ℕ)) |
131 | 130 | adantl 275 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝐷 = 0 ∧ (((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((0 ≤ 𝐷 ∧ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁)) → 𝐷 ∈ ℕ)) |
132 | 104, 131 | sylbid 149 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝐷 = 0 ∧ (((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) → 𝐷 ∈ ℕ)) |
133 | 132 | ex 114 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝐷 = 0 → ((((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) → 𝐷 ∈ ℕ))) |
134 | 99, 133 | jaoi 706 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐷 ∈ ℕ ∨ 𝐷 = 0) → ((((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) → 𝐷 ∈ ℕ))) |
135 | 98, 134 | sylbi 120 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐷 ∈ ℕ0
→ ((((𝑦 ∈ ℤ
∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) → 𝐷 ∈ ℕ))) |
136 | 135 | impcom 124 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝑦 ∈
ℤ ∧ (𝑦 ∥
𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐷 ∈ ℕ0) → ((0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) → 𝐷 ∈ ℕ)) |
137 | 136 | imp 123 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑦 ∈
ℤ ∧ (𝑦 ∥
𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐷 ∈ ℕ0) ∧ (0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁))) → 𝐷 ∈ ℕ) |
138 | | dvdsle 11782 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑦 ∥ 𝐷 → 𝑦 ≤ 𝐷)) |
139 | 97, 137, 138 | syl2anc 409 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑦 ∈
ℤ ∧ (𝑦 ∥
𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐷 ∈ ℕ0) ∧ (0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁))) → (𝑦 ∥ 𝐷 → 𝑦 ≤ 𝐷)) |
140 | 139 | exp31 362 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐷 ∈ ℕ0 → ((0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) → (𝑦 ∥ 𝐷 → 𝑦 ≤ 𝐷)))) |
141 | 140 | com14 88 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∥ 𝐷 → (𝐷 ∈ ℕ0 → ((0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) → ((((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑦 ≤ 𝐷)))) |
142 | 141 | imp 123 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 ∥ 𝐷 ∧ 𝐷 ∈ ℕ0) → ((0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) → ((((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑦 ≤ 𝐷))) |
143 | 142 | impcom 124 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) ∧ (𝑦 ∥ 𝐷 ∧ 𝐷 ∈ ℕ0)) →
((((𝑦 ∈ ℤ ∧
(𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑦 ≤ 𝐷)) |
144 | 143 | imp 123 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((0
≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) ∧ (𝑦 ∥ 𝐷 ∧ 𝐷 ∈ ℕ0)) ∧ (((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑦 ≤ 𝐷) |
145 | 95, 96, 144 | lensymd 8020 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((0
≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) ∧ (𝑦 ∥ 𝐷 ∧ 𝐷 ∈ ℕ0)) ∧ (((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ¬ 𝐷 < 𝑦) |
146 | 145 | exp31 362 |
. . . . . . . . . . . . . . . . 17
⊢ ((0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) → ((𝑦 ∥ 𝐷 ∧ 𝐷 ∈ ℕ0) →
((((𝑦 ∈ ℤ ∧
(𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ¬ 𝐷 < 𝑦))) |
147 | 92, 146 | mpan2d 425 |
. . . . . . . . . . . . . . . 16
⊢ ((0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) → (𝑦 ∥ 𝐷 → ((((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ¬ 𝐷 < 𝑦))) |
148 | 147 | com13 80 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑦 ∥ 𝐷 → ((0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) → ¬ 𝐷 < 𝑦))) |
149 | 86, 148 | syld 45 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷) → ((0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) → ¬ 𝐷 < 𝑦))) |
150 | 149 | com13 80 |
. . . . . . . . . . . . 13
⊢ ((0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) → (∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷) → ((((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ¬ 𝐷 < 𝑦))) |
151 | 150 | 3impia 1190 |
. . . . . . . . . . . 12
⊢ ((0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)) → ((((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ¬ 𝐷 < 𝑦)) |
152 | 151 | com12 30 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)) → ¬ 𝐷 < 𝑦)) |
153 | 152 | expimpd 361 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷))) → ¬ 𝐷 < 𝑦)) |
154 | 153 | expimpd 361 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) → ((¬ (𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) → ¬ 𝐷 < 𝑦)) |
155 | 77, 154 | sylbi 120 |
. . . . . . . 8
⊢ (𝑦 ∈ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)} → ((¬ (𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) → ¬ 𝐷 < 𝑦)) |
156 | 155 | impcom 124 |
. . . . . . 7
⊢ (((¬
(𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}) → ¬ 𝐷 < 𝑦) |
157 | 69 | adantr 274 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) → 𝐷 ∈ ℤ) |
158 | 157 | ancri 322 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) → (𝐷 ∈ ℤ ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁))) |
159 | 158 | 3ad2ant2 1009 |
. . . . . . . . . . 11
⊢ ((0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)) → (𝐷 ∈ ℤ ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁))) |
160 | 159 | ad2antll 483 |
. . . . . . . . . 10
⊢ ((¬
(𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) → (𝐷 ∈ ℤ ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁))) |
161 | 160 | adantr 274 |
. . . . . . . . 9
⊢ (((¬
(𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) ∧ (𝑦 ∈ ℝ ∧ 𝑦 < 𝐷)) → (𝐷 ∈ ℤ ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁))) |
162 | | breq1 3985 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝐷 → (𝑛 ∥ 𝑀 ↔ 𝐷 ∥ 𝑀)) |
163 | | breq1 3985 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝐷 → (𝑛 ∥ 𝑁 ↔ 𝐷 ∥ 𝑁)) |
164 | 162, 163 | anbi12d 465 |
. . . . . . . . . 10
⊢ (𝑛 = 𝐷 → ((𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁) ↔ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁))) |
165 | 164 | elrab 2882 |
. . . . . . . . 9
⊢ (𝐷 ∈ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)} ↔ (𝐷 ∈ ℤ ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁))) |
166 | 161, 165 | sylibr 133 |
. . . . . . . 8
⊢ (((¬
(𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) ∧ (𝑦 ∈ ℝ ∧ 𝑦 < 𝐷)) → 𝐷 ∈ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}) |
167 | | breq2 3986 |
. . . . . . . . 9
⊢ (𝑧 = 𝐷 → (𝑦 < 𝑧 ↔ 𝑦 < 𝐷)) |
168 | 167 | adantl 275 |
. . . . . . . 8
⊢ ((((¬
(𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) ∧ (𝑦 ∈ ℝ ∧ 𝑦 < 𝐷)) ∧ 𝑧 = 𝐷) → (𝑦 < 𝑧 ↔ 𝑦 < 𝐷)) |
169 | | simprr 522 |
. . . . . . . 8
⊢ (((¬
(𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) ∧ (𝑦 ∈ ℝ ∧ 𝑦 < 𝐷)) → 𝑦 < 𝐷) |
170 | 166, 168,
169 | rspcedvd 2836 |
. . . . . . 7
⊢ (((¬
(𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) ∧ (𝑦 ∈ ℝ ∧ 𝑦 < 𝐷)) → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}𝑦 < 𝑧) |
171 | 67, 73, 156, 170 | eqsuptid 6962 |
. . . . . 6
⊢ ((¬
(𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) → sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ) = 𝐷) |
172 | 65, 171 | eqtrd 2198 |
. . . . 5
⊢ ((¬
(𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) → if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < )) = 𝐷) |
173 | 172 | ancoms 266 |
. . . 4
⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷))) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < )) = 𝐷) |
174 | | gcdmndc 11877 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
DECID (𝑀 = 0
∧ 𝑁 =
0)) |
175 | 174 | adantr 274 |
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷))) → DECID (𝑀 = 0 ∧ 𝑁 = 0)) |
176 | | exmiddc 826 |
. . . . 5
⊢
(DECID (𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 = 0 ∧ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∧ 𝑁 = 0))) |
177 | 175, 176 | syl 14 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷))) → ((𝑀 = 0 ∧ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∧ 𝑁 = 0))) |
178 | 63, 173, 177 | mpjaodan 788 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷))) → if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < )) = 𝐷) |
179 | 23, 178 | eqtr2d 2199 |
. 2
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷))) → 𝐷 = (𝑀 gcd 𝑁)) |
180 | 21, 179 | impbida 586 |
1
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐷 = (𝑀 gcd 𝑁) ↔ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) |