ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfgcd2 GIF version

Theorem dfgcd2 12056
Description: Alternate definition of the gcd operator, see definition in [ApostolNT] p. 15. (Contributed by AV, 8-Aug-2021.)
Assertion
Ref Expression
dfgcd2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐷 = (𝑀 gcd 𝑁) ↔ (0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷))))
Distinct variable groups:   𝐷,𝑒   𝑒,𝑀   𝑒,𝑁

Proof of Theorem dfgcd2
Dummy variables 𝑓 𝑔 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gcdcl 12008 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
21nn0ge0d 9267 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 0 ≤ (𝑀 gcd 𝑁))
3 gcddvds 12005 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
4 3anass 984 . . . . . . . 8 ((𝑒 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ (𝑒 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)))
5 ancom 266 . . . . . . . 8 ((𝑒 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑒 ∈ ℤ))
64, 5bitri 184 . . . . . . 7 ((𝑒 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑒 ∈ ℤ))
7 dvdsgcd 12054 . . . . . . 7 ((𝑒 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑒𝑀𝑒𝑁) → 𝑒 ∥ (𝑀 gcd 𝑁)))
86, 7sylbir 135 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑒 ∈ ℤ) → ((𝑒𝑀𝑒𝑁) → 𝑒 ∥ (𝑀 gcd 𝑁)))
98ralrimiva 2563 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒 ∥ (𝑀 gcd 𝑁)))
102, 3, 93jca 1179 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ≤ (𝑀 gcd 𝑁) ∧ ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒 ∥ (𝑀 gcd 𝑁))))
1110adantr 276 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐷 = (𝑀 gcd 𝑁)) → (0 ≤ (𝑀 gcd 𝑁) ∧ ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒 ∥ (𝑀 gcd 𝑁))))
12 breq2 4025 . . . . 5 (𝐷 = (𝑀 gcd 𝑁) → (0 ≤ 𝐷 ↔ 0 ≤ (𝑀 gcd 𝑁)))
13 breq1 4024 . . . . . 6 (𝐷 = (𝑀 gcd 𝑁) → (𝐷𝑀 ↔ (𝑀 gcd 𝑁) ∥ 𝑀))
14 breq1 4024 . . . . . 6 (𝐷 = (𝑀 gcd 𝑁) → (𝐷𝑁 ↔ (𝑀 gcd 𝑁) ∥ 𝑁))
1513, 14anbi12d 473 . . . . 5 (𝐷 = (𝑀 gcd 𝑁) → ((𝐷𝑀𝐷𝑁) ↔ ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)))
16 breq2 4025 . . . . . . 7 (𝐷 = (𝑀 gcd 𝑁) → (𝑒𝐷𝑒 ∥ (𝑀 gcd 𝑁)))
1716imbi2d 230 . . . . . 6 (𝐷 = (𝑀 gcd 𝑁) → (((𝑒𝑀𝑒𝑁) → 𝑒𝐷) ↔ ((𝑒𝑀𝑒𝑁) → 𝑒 ∥ (𝑀 gcd 𝑁))))
1817ralbidv 2490 . . . . 5 (𝐷 = (𝑀 gcd 𝑁) → (∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷) ↔ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒 ∥ (𝑀 gcd 𝑁))))
1912, 15, 183anbi123d 1323 . . . 4 (𝐷 = (𝑀 gcd 𝑁) → ((0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷)) ↔ (0 ≤ (𝑀 gcd 𝑁) ∧ ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒 ∥ (𝑀 gcd 𝑁)))))
2019adantl 277 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐷 = (𝑀 gcd 𝑁)) → ((0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷)) ↔ (0 ≤ (𝑀 gcd 𝑁) ∧ ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒 ∥ (𝑀 gcd 𝑁)))))
2111, 20mpbird 167 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐷 = (𝑀 gcd 𝑁)) → (0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷)))
22 gcdval 12001 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < )))
2322adantr 276 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷))) → (𝑀 gcd 𝑁) = if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < )))
24 iftrue 3554 . . . . . . 7 ((𝑀 = 0 ∧ 𝑁 = 0) → if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < )) = 0)
2524adantr 276 . . . . . 6 (((𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷)))) → if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < )) = 0)
26 breq2 4025 . . . . . . . . . . 11 (𝑀 = 0 → (𝐷𝑀𝐷 ∥ 0))
27 breq2 4025 . . . . . . . . . . 11 (𝑁 = 0 → (𝐷𝑁𝐷 ∥ 0))
2826, 27bi2anan9 606 . . . . . . . . . 10 ((𝑀 = 0 ∧ 𝑁 = 0) → ((𝐷𝑀𝐷𝑁) ↔ (𝐷 ∥ 0 ∧ 𝐷 ∥ 0)))
29 breq2 4025 . . . . . . . . . . . . 13 (𝑀 = 0 → (𝑒𝑀𝑒 ∥ 0))
30 breq2 4025 . . . . . . . . . . . . 13 (𝑁 = 0 → (𝑒𝑁𝑒 ∥ 0))
3129, 30bi2anan9 606 . . . . . . . . . . . 12 ((𝑀 = 0 ∧ 𝑁 = 0) → ((𝑒𝑀𝑒𝑁) ↔ (𝑒 ∥ 0 ∧ 𝑒 ∥ 0)))
3231imbi1d 231 . . . . . . . . . . 11 ((𝑀 = 0 ∧ 𝑁 = 0) → (((𝑒𝑀𝑒𝑁) → 𝑒𝐷) ↔ ((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒𝐷)))
3332ralbidv 2490 . . . . . . . . . 10 ((𝑀 = 0 ∧ 𝑁 = 0) → (∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷) ↔ ∀𝑒 ∈ ℤ ((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒𝐷)))
3428, 333anbi23d 1326 . . . . . . . . 9 ((𝑀 = 0 ∧ 𝑁 = 0) → ((0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷)) ↔ (0 ≤ 𝐷 ∧ (𝐷 ∥ 0 ∧ 𝐷 ∥ 0) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒𝐷))))
35 dvdszrcl 11840 . . . . . . . . . . . . 13 (𝐷 ∥ 0 → (𝐷 ∈ ℤ ∧ 0 ∈ ℤ))
36 dvds0 11854 . . . . . . . . . . . . . . . . . . . 20 (𝑒 ∈ ℤ → 𝑒 ∥ 0)
3736, 36jca 306 . . . . . . . . . . . . . . . . . . 19 (𝑒 ∈ ℤ → (𝑒 ∥ 0 ∧ 𝑒 ∥ 0))
3837adantl 277 . . . . . . . . . . . . . . . . . 18 (((𝐷 ∈ ℤ ∧ 0 ≤ 𝐷) ∧ 𝑒 ∈ ℤ) → (𝑒 ∥ 0 ∧ 𝑒 ∥ 0))
39 pm5.5 242 . . . . . . . . . . . . . . . . . 18 ((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → (((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒𝐷) ↔ 𝑒𝐷))
4038, 39syl 14 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ ℤ ∧ 0 ≤ 𝐷) ∧ 𝑒 ∈ ℤ) → (((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒𝐷) ↔ 𝑒𝐷))
4140ralbidva 2486 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ ℤ ∧ 0 ≤ 𝐷) → (∀𝑒 ∈ ℤ ((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒𝐷) ↔ ∀𝑒 ∈ ℤ 𝑒𝐷))
42 0z 9299 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℤ
43 breq1 4024 . . . . . . . . . . . . . . . . . . . 20 (𝑒 = 0 → (𝑒𝐷 ↔ 0 ∥ 𝐷))
4443rspcv 2852 . . . . . . . . . . . . . . . . . . 19 (0 ∈ ℤ → (∀𝑒 ∈ ℤ 𝑒𝐷 → 0 ∥ 𝐷))
4542, 44ax-mp 5 . . . . . . . . . . . . . . . . . 18 (∀𝑒 ∈ ℤ 𝑒𝐷 → 0 ∥ 𝐷)
46 0dvds 11859 . . . . . . . . . . . . . . . . . . . 20 (𝐷 ∈ ℤ → (0 ∥ 𝐷𝐷 = 0))
4746biimpd 144 . . . . . . . . . . . . . . . . . . 19 (𝐷 ∈ ℤ → (0 ∥ 𝐷𝐷 = 0))
48 eqcom 2191 . . . . . . . . . . . . . . . . . . 19 (0 = 𝐷𝐷 = 0)
4947, 48imbitrrdi 162 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ ℤ → (0 ∥ 𝐷 → 0 = 𝐷))
5045, 49syl5 32 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ ℤ → (∀𝑒 ∈ ℤ 𝑒𝐷 → 0 = 𝐷))
5150adantr 276 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ ℤ ∧ 0 ≤ 𝐷) → (∀𝑒 ∈ ℤ 𝑒𝐷 → 0 = 𝐷))
5241, 51sylbid 150 . . . . . . . . . . . . . . 15 ((𝐷 ∈ ℤ ∧ 0 ≤ 𝐷) → (∀𝑒 ∈ ℤ ((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒𝐷) → 0 = 𝐷))
5352ex 115 . . . . . . . . . . . . . 14 (𝐷 ∈ ℤ → (0 ≤ 𝐷 → (∀𝑒 ∈ ℤ ((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒𝐷) → 0 = 𝐷)))
5453adantr 276 . . . . . . . . . . . . 13 ((𝐷 ∈ ℤ ∧ 0 ∈ ℤ) → (0 ≤ 𝐷 → (∀𝑒 ∈ ℤ ((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒𝐷) → 0 = 𝐷)))
5535, 54syl 14 . . . . . . . . . . . 12 (𝐷 ∥ 0 → (0 ≤ 𝐷 → (∀𝑒 ∈ ℤ ((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒𝐷) → 0 = 𝐷)))
5655adantr 276 . . . . . . . . . . 11 ((𝐷 ∥ 0 ∧ 𝐷 ∥ 0) → (0 ≤ 𝐷 → (∀𝑒 ∈ ℤ ((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒𝐷) → 0 = 𝐷)))
5756com12 30 . . . . . . . . . 10 (0 ≤ 𝐷 → ((𝐷 ∥ 0 ∧ 𝐷 ∥ 0) → (∀𝑒 ∈ ℤ ((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒𝐷) → 0 = 𝐷)))
58573imp 1195 . . . . . . . . 9 ((0 ≤ 𝐷 ∧ (𝐷 ∥ 0 ∧ 𝐷 ∥ 0) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒𝐷)) → 0 = 𝐷)
5934, 58biimtrdi 163 . . . . . . . 8 ((𝑀 = 0 ∧ 𝑁 = 0) → ((0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷)) → 0 = 𝐷))
6059adantld 278 . . . . . . 7 ((𝑀 = 0 ∧ 𝑁 = 0) → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷))) → 0 = 𝐷))
6160imp 124 . . . . . 6 (((𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷)))) → 0 = 𝐷)
6225, 61eqtrd 2222 . . . . 5 (((𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷)))) → if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < )) = 𝐷)
6362ancoms 268 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷))) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < )) = 𝐷)
64 iffalse 3557 . . . . . . 7 (¬ (𝑀 = 0 ∧ 𝑁 = 0) → if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < )) = sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < ))
6564adantr 276 . . . . . 6 ((¬ (𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷)))) → if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < )) = sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < ))
66 lttri3 8072 . . . . . . . 8 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
6766adantl 277 . . . . . . 7 (((¬ (𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷)))) ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
68 dvdszrcl 11840 . . . . . . . . . . . 12 (𝐷𝑀 → (𝐷 ∈ ℤ ∧ 𝑀 ∈ ℤ))
6968simpld 112 . . . . . . . . . . 11 (𝐷𝑀𝐷 ∈ ℤ)
7069zred 9410 . . . . . . . . . 10 (𝐷𝑀𝐷 ∈ ℝ)
7170adantr 276 . . . . . . . . 9 ((𝐷𝑀𝐷𝑁) → 𝐷 ∈ ℝ)
72713ad2ant2 1021 . . . . . . . 8 ((0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷)) → 𝐷 ∈ ℝ)
7372ad2antll 491 . . . . . . 7 ((¬ (𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷)))) → 𝐷 ∈ ℝ)
74 breq1 4024 . . . . . . . . . . 11 (𝑛 = 𝑦 → (𝑛𝑀𝑦𝑀))
75 breq1 4024 . . . . . . . . . . 11 (𝑛 = 𝑦 → (𝑛𝑁𝑦𝑁))
7674, 75anbi12d 473 . . . . . . . . . 10 (𝑛 = 𝑦 → ((𝑛𝑀𝑛𝑁) ↔ (𝑦𝑀𝑦𝑁)))
7776elrab 2908 . . . . . . . . 9 (𝑦 ∈ {𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)} ↔ (𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)))
78 breq1 4024 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 = 𝑦 → (𝑒𝑀𝑦𝑀))
79 breq1 4024 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 = 𝑦 → (𝑒𝑁𝑦𝑁))
8078, 79anbi12d 473 . . . . . . . . . . . . . . . . . . . 20 (𝑒 = 𝑦 → ((𝑒𝑀𝑒𝑁) ↔ (𝑦𝑀𝑦𝑁)))
81 breq1 4024 . . . . . . . . . . . . . . . . . . . 20 (𝑒 = 𝑦 → (𝑒𝐷𝑦𝐷))
8280, 81imbi12d 234 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝑦 → (((𝑒𝑀𝑒𝑁) → 𝑒𝐷) ↔ ((𝑦𝑀𝑦𝑁) → 𝑦𝐷)))
8382rspcv 2852 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℤ → (∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷) → ((𝑦𝑀𝑦𝑁) → 𝑦𝐷)))
8483com23 78 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℤ → ((𝑦𝑀𝑦𝑁) → (∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷) → 𝑦𝐷)))
8584imp 124 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) → (∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷) → 𝑦𝐷))
8685ad2antrr 488 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷) → 𝑦𝐷))
87 elnn0z 9301 . . . . . . . . . . . . . . . . . . . . . 22 (𝐷 ∈ ℕ0 ↔ (𝐷 ∈ ℤ ∧ 0 ≤ 𝐷))
8887simplbi2 385 . . . . . . . . . . . . . . . . . . . . 21 (𝐷 ∈ ℤ → (0 ≤ 𝐷𝐷 ∈ ℕ0))
8988adantr 276 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (0 ≤ 𝐷𝐷 ∈ ℕ0))
9068, 89syl 14 . . . . . . . . . . . . . . . . . . 19 (𝐷𝑀 → (0 ≤ 𝐷𝐷 ∈ ℕ0))
9190adantr 276 . . . . . . . . . . . . . . . . . 18 ((𝐷𝑀𝐷𝑁) → (0 ≤ 𝐷𝐷 ∈ ℕ0))
9291impcom 125 . . . . . . . . . . . . . . . . 17 ((0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁)) → 𝐷 ∈ ℕ0)
93 zre 9292 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℤ → 𝑦 ∈ ℝ)
9493ad2antrr 488 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → 𝑦 ∈ ℝ)
9594ad2antrl 490 . . . . . . . . . . . . . . . . . . 19 ((((0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁)) ∧ (𝑦𝐷𝐷 ∈ ℕ0)) ∧ (((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑦 ∈ ℝ)
9671ad3antlr 493 . . . . . . . . . . . . . . . . . . 19 ((((0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁)) ∧ (𝑦𝐷𝐷 ∈ ℕ0)) ∧ (((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝐷 ∈ ℝ)
97 simp-5l 543 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐷 ∈ ℕ0) ∧ (0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁))) → 𝑦 ∈ ℤ)
98 elnn0 9213 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐷 ∈ ℕ0 ↔ (𝐷 ∈ ℕ ∨ 𝐷 = 0))
99 2a1 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐷 ∈ ℕ → ((((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁)) → 𝐷 ∈ ℕ)))
100 breq1 4024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝐷 = 0 → (𝐷𝑀 ↔ 0 ∥ 𝑀))
101 breq1 4024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝐷 = 0 → (𝐷𝑁 ↔ 0 ∥ 𝑁))
102100, 101anbi12d 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝐷 = 0 → ((𝐷𝑀𝐷𝑁) ↔ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁)))
103102anbi2d 464 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐷 = 0 → ((0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁)) ↔ (0 ≤ 𝐷 ∧ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁))))
104103adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐷 = 0 ∧ (((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁)) ↔ (0 ≤ 𝐷 ∧ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁))))
105 simplr 528 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ¬ (𝑀 = 0 ∧ 𝑁 = 0))
106 zdceq 9363 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑀 = 0)
10742, 106mpan2 425 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑀 ∈ ℤ → DECID 𝑀 = 0)
108 ianordc 900 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (DECID 𝑀 = 0 → (¬ (𝑀 = 0 ∧ 𝑁 = 0) ↔ (¬ 𝑀 = 0 ∨ ¬ 𝑁 = 0)))
109107, 108syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑀 ∈ ℤ → (¬ (𝑀 = 0 ∧ 𝑁 = 0) ↔ (¬ 𝑀 = 0 ∨ ¬ 𝑁 = 0)))
110109ad2antrl 490 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) ↔ (¬ 𝑀 = 0 ∨ ¬ 𝑁 = 0)))
111105, 110mpbid 147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (¬ 𝑀 = 0 ∨ ¬ 𝑁 = 0))
112 dvdszrcl 11840 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (0 ∥ 𝑀 → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ))
113 0dvds 11859 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑀 ∈ ℤ → (0 ∥ 𝑀𝑀 = 0))
114 pm2.24 622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑀 = 0 → (¬ 𝑀 = 0 → 𝐷 ∈ ℕ))
115113, 114biimtrdi 163 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑀 ∈ ℤ → (0 ∥ 𝑀 → (¬ 𝑀 = 0 → 𝐷 ∈ ℕ)))
116115adantl 277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (0 ∥ 𝑀 → (¬ 𝑀 = 0 → 𝐷 ∈ ℕ)))
117112, 116mpcom 36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (0 ∥ 𝑀 → (¬ 𝑀 = 0 → 𝐷 ∈ ℕ))
118117adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((0 ∥ 𝑀 ∧ 0 ∥ 𝑁) → (¬ 𝑀 = 0 → 𝐷 ∈ ℕ))
119118com12 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 𝑀 = 0 → ((0 ∥ 𝑀 ∧ 0 ∥ 𝑁) → 𝐷 ∈ ℕ))
120 dvdszrcl 11840 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (0 ∥ 𝑁 → (0 ∈ ℤ ∧ 𝑁 ∈ ℤ))
121 0dvds 11859 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
122 pm2.24 622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑁 = 0 → (¬ 𝑁 = 0 → 𝐷 ∈ ℕ))
123121, 122biimtrdi 163 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑁 ∈ ℤ → (0 ∥ 𝑁 → (¬ 𝑁 = 0 → 𝐷 ∈ ℕ)))
124123adantl 277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑁 → (¬ 𝑁 = 0 → 𝐷 ∈ ℕ)))
125120, 124mpcom 36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (0 ∥ 𝑁 → (¬ 𝑁 = 0 → 𝐷 ∈ ℕ))
126125adantl 277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((0 ∥ 𝑀 ∧ 0 ∥ 𝑁) → (¬ 𝑁 = 0 → 𝐷 ∈ ℕ))
127126com12 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 𝑁 = 0 → ((0 ∥ 𝑀 ∧ 0 ∥ 𝑁) → 𝐷 ∈ ℕ))
128119, 127jaoi 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((¬ 𝑀 = 0 ∨ ¬ 𝑁 = 0) → ((0 ∥ 𝑀 ∧ 0 ∥ 𝑁) → 𝐷 ∈ ℕ))
129111, 128syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((0 ∥ 𝑀 ∧ 0 ∥ 𝑁) → 𝐷 ∈ ℕ))
130129adantld 278 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((0 ≤ 𝐷 ∧ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁)) → 𝐷 ∈ ℕ))
131130adantl 277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐷 = 0 ∧ (((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((0 ≤ 𝐷 ∧ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁)) → 𝐷 ∈ ℕ))
132104, 131sylbid 150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐷 = 0 ∧ (((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁)) → 𝐷 ∈ ℕ))
133132ex 115 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐷 = 0 → ((((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁)) → 𝐷 ∈ ℕ)))
13499, 133jaoi 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐷 ∈ ℕ ∨ 𝐷 = 0) → ((((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁)) → 𝐷 ∈ ℕ)))
13598, 134sylbi 121 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐷 ∈ ℕ0 → ((((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁)) → 𝐷 ∈ ℕ)))
136135impcom 125 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐷 ∈ ℕ0) → ((0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁)) → 𝐷 ∈ ℕ))
137136imp 124 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐷 ∈ ℕ0) ∧ (0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁))) → 𝐷 ∈ ℕ)
138 dvdsle 11891 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑦𝐷𝑦𝐷))
13997, 137, 138syl2anc 411 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐷 ∈ ℕ0) ∧ (0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁))) → (𝑦𝐷𝑦𝐷))
140139exp31 364 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐷 ∈ ℕ0 → ((0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁)) → (𝑦𝐷𝑦𝐷))))
141140com14 88 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐷 → (𝐷 ∈ ℕ0 → ((0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁)) → ((((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑦𝐷))))
142141imp 124 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝐷𝐷 ∈ ℕ0) → ((0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁)) → ((((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑦𝐷)))
143142impcom 125 . . . . . . . . . . . . . . . . . . . 20 (((0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁)) ∧ (𝑦𝐷𝐷 ∈ ℕ0)) → ((((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑦𝐷))
144143imp 124 . . . . . . . . . . . . . . . . . . 19 ((((0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁)) ∧ (𝑦𝐷𝐷 ∈ ℕ0)) ∧ (((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑦𝐷)
14595, 96, 144lensymd 8114 . . . . . . . . . . . . . . . . . 18 ((((0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁)) ∧ (𝑦𝐷𝐷 ∈ ℕ0)) ∧ (((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ¬ 𝐷 < 𝑦)
146145exp31 364 . . . . . . . . . . . . . . . . 17 ((0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁)) → ((𝑦𝐷𝐷 ∈ ℕ0) → ((((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ¬ 𝐷 < 𝑦)))
14792, 146mpan2d 428 . . . . . . . . . . . . . . . 16 ((0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁)) → (𝑦𝐷 → ((((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ¬ 𝐷 < 𝑦)))
148147com13 80 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑦𝐷 → ((0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁)) → ¬ 𝐷 < 𝑦)))
14986, 148syld 45 . . . . . . . . . . . . . 14 ((((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷) → ((0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁)) → ¬ 𝐷 < 𝑦)))
150149com13 80 . . . . . . . . . . . . 13 ((0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁)) → (∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷) → ((((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ¬ 𝐷 < 𝑦)))
1511503impia 1202 . . . . . . . . . . . 12 ((0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷)) → ((((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ¬ 𝐷 < 𝑦))
152151com12 30 . . . . . . . . . . 11 ((((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷)) → ¬ 𝐷 < 𝑦))
153152expimpd 363 . . . . . . . . . 10 (((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷))) → ¬ 𝐷 < 𝑦))
154153expimpd 363 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ (𝑦𝑀𝑦𝑁)) → ((¬ (𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷)))) → ¬ 𝐷 < 𝑦))
15577, 154sylbi 121 . . . . . . . 8 (𝑦 ∈ {𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)} → ((¬ (𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷)))) → ¬ 𝐷 < 𝑦))
156155impcom 125 . . . . . . 7 (((¬ (𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷)))) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}) → ¬ 𝐷 < 𝑦)
15769adantr 276 . . . . . . . . . . . . 13 ((𝐷𝑀𝐷𝑁) → 𝐷 ∈ ℤ)
158157ancri 324 . . . . . . . . . . . 12 ((𝐷𝑀𝐷𝑁) → (𝐷 ∈ ℤ ∧ (𝐷𝑀𝐷𝑁)))
1591583ad2ant2 1021 . . . . . . . . . . 11 ((0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷)) → (𝐷 ∈ ℤ ∧ (𝐷𝑀𝐷𝑁)))
160159ad2antll 491 . . . . . . . . . 10 ((¬ (𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷)))) → (𝐷 ∈ ℤ ∧ (𝐷𝑀𝐷𝑁)))
161160adantr 276 . . . . . . . . 9 (((¬ (𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷)))) ∧ (𝑦 ∈ ℝ ∧ 𝑦 < 𝐷)) → (𝐷 ∈ ℤ ∧ (𝐷𝑀𝐷𝑁)))
162 breq1 4024 . . . . . . . . . . 11 (𝑛 = 𝐷 → (𝑛𝑀𝐷𝑀))
163 breq1 4024 . . . . . . . . . . 11 (𝑛 = 𝐷 → (𝑛𝑁𝐷𝑁))
164162, 163anbi12d 473 . . . . . . . . . 10 (𝑛 = 𝐷 → ((𝑛𝑀𝑛𝑁) ↔ (𝐷𝑀𝐷𝑁)))
165164elrab 2908 . . . . . . . . 9 (𝐷 ∈ {𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)} ↔ (𝐷 ∈ ℤ ∧ (𝐷𝑀𝐷𝑁)))
166161, 165sylibr 134 . . . . . . . 8 (((¬ (𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷)))) ∧ (𝑦 ∈ ℝ ∧ 𝑦 < 𝐷)) → 𝐷 ∈ {𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)})
167 breq2 4025 . . . . . . . . 9 (𝑧 = 𝐷 → (𝑦 < 𝑧𝑦 < 𝐷))
168167adantl 277 . . . . . . . 8 ((((¬ (𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷)))) ∧ (𝑦 ∈ ℝ ∧ 𝑦 < 𝐷)) ∧ 𝑧 = 𝐷) → (𝑦 < 𝑧𝑦 < 𝐷))
169 simprr 531 . . . . . . . 8 (((¬ (𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷)))) ∧ (𝑦 ∈ ℝ ∧ 𝑦 < 𝐷)) → 𝑦 < 𝐷)
170166, 168, 169rspcedvd 2862 . . . . . . 7 (((¬ (𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷)))) ∧ (𝑦 ∈ ℝ ∧ 𝑦 < 𝐷)) → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}𝑦 < 𝑧)
17167, 73, 156, 170eqsuptid 7030 . . . . . 6 ((¬ (𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷)))) → sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < ) = 𝐷)
17265, 171eqtrd 2222 . . . . 5 ((¬ (𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷)))) → if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < )) = 𝐷)
173172ancoms 268 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷))) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < )) = 𝐷)
174 gcdmndc 11986 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∧ 𝑁 = 0))
175174adantr 276 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷))) → DECID (𝑀 = 0 ∧ 𝑁 = 0))
176 exmiddc 837 . . . . 5 (DECID (𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 = 0 ∧ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∧ 𝑁 = 0)))
177175, 176syl 14 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷))) → ((𝑀 = 0 ∧ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∧ 𝑁 = 0)))
17863, 173, 177mpjaodan 799 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷))) → if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < )) = 𝐷)
17923, 178eqtr2d 2223 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷))) → 𝐷 = (𝑀 gcd 𝑁))
18021, 179impbida 596 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐷 = (𝑀 gcd 𝑁) ↔ (0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wcel 2160  wral 2468  {crab 2472  ifcif 3549   class class class wbr 4021  (class class class)co 5900  supcsup 7015  cr 7845  0cc0 7846   < clt 8027  cle 8028  cn 8954  0cn0 9211  cz 9288  cdvds 11835   gcd cgcd 11984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-nul 4147  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-iinf 4608  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-mulrcl 7945  ax-addcom 7946  ax-mulcom 7947  ax-addass 7948  ax-mulass 7949  ax-distr 7950  ax-i2m1 7951  ax-0lt1 7952  ax-1rid 7953  ax-0id 7954  ax-rnegex 7955  ax-precex 7956  ax-cnre 7957  ax-pre-ltirr 7958  ax-pre-ltwlin 7959  ax-pre-lttrn 7960  ax-pre-apti 7961  ax-pre-ltadd 7962  ax-pre-mulgt0 7963  ax-pre-mulext 7964  ax-arch 7965  ax-caucvg 7966
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-tr 4120  df-id 4314  df-po 4317  df-iso 4318  df-iord 4387  df-on 4389  df-ilim 4390  df-suc 4392  df-iom 4611  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-1st 6169  df-2nd 6170  df-recs 6334  df-frec 6420  df-sup 7017  df-pnf 8029  df-mnf 8030  df-xr 8031  df-ltxr 8032  df-le 8033  df-sub 8165  df-neg 8166  df-reap 8567  df-ap 8574  df-div 8665  df-inn 8955  df-2 9013  df-3 9014  df-4 9015  df-n0 9212  df-z 9289  df-uz 9564  df-q 9656  df-rp 9690  df-fz 10045  df-fzo 10179  df-fl 10307  df-mod 10360  df-seqfrec 10485  df-exp 10560  df-cj 10892  df-re 10893  df-im 10894  df-rsqrt 11048  df-abs 11049  df-dvds 11836  df-gcd 11985
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator