![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3anbi123d | GIF version |
Description: Deduction joining 3 equivalences to form equivalence of conjunctions. (Contributed by NM, 22-Apr-1994.) |
Ref | Expression |
---|---|
bi3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bi3d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
bi3d.3 | ⊢ (𝜑 → (𝜂 ↔ 𝜁)) |
Ref | Expression |
---|---|
3anbi123d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi3d.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bi3d.2 | . . . 4 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
3 | 1, 2 | anbi12d 473 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) ↔ (𝜒 ∧ 𝜏))) |
4 | bi3d.3 | . . 3 ⊢ (𝜑 → (𝜂 ↔ 𝜁)) | |
5 | 3, 4 | anbi12d 473 | . 2 ⊢ (𝜑 → (((𝜓 ∧ 𝜃) ∧ 𝜂) ↔ ((𝜒 ∧ 𝜏) ∧ 𝜁))) |
6 | df-3an 980 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ ((𝜓 ∧ 𝜃) ∧ 𝜂)) | |
7 | df-3an 980 | . 2 ⊢ ((𝜒 ∧ 𝜏 ∧ 𝜁) ↔ ((𝜒 ∧ 𝜏) ∧ 𝜁)) | |
8 | 5, 6, 7 | 3bitr4g 223 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜁))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: 3anbi12d 1313 3anbi13d 1314 3anbi23d 1315 limeq 4379 smoeq 6293 tfrlemi1 6335 tfr1onlemaccex 6351 tfrcllemaccex 6364 ereq1 6544 updjud 7083 ctssdclemr 7113 tapeq1 7253 tapeq2 7254 elinp 7475 sup3exmid 8916 iccshftr 9996 iccshftl 9998 iccdil 10000 icccntr 10002 fzaddel 10061 elfzomelpfzo 10233 seq3f1olemstep 10503 seq3f1olemp 10504 sumeq1 11365 summodclem2 11392 summodc 11393 zsumdc 11394 prodmodclem2 11587 prodmodc 11588 divalglemnn 11925 divalglemeunn 11928 divalglemeuneg 11930 dfgcd2 12017 pythagtriplem18 12283 pythagtriplem19 12284 ctiunct 12443 ssomct 12448 isstruct2im 12474 isstruct2r 12475 ptex 12718 isringd 13225 issubrg3 13373 islmod 13386 lmodlema 13387 islmodd 13388 lmodprop2d 13443 fiinopn 13589 lmfval 13777 upxp 13857 2irrexpqap 14481 dceqnconst 14893 dcapnconst 14894 |
Copyright terms: Public domain | W3C validator |