| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anbi123d | GIF version | ||
| Description: Deduction joining 3 equivalences to form equivalence of conjunctions. (Contributed by NM, 22-Apr-1994.) |
| Ref | Expression |
|---|---|
| bi3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bi3d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| bi3d.3 | ⊢ (𝜑 → (𝜂 ↔ 𝜁)) |
| Ref | Expression |
|---|---|
| 3anbi123d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi3d.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bi3d.2 | . . . 4 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 3 | 1, 2 | anbi12d 473 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) ↔ (𝜒 ∧ 𝜏))) |
| 4 | bi3d.3 | . . 3 ⊢ (𝜑 → (𝜂 ↔ 𝜁)) | |
| 5 | 3, 4 | anbi12d 473 | . 2 ⊢ (𝜑 → (((𝜓 ∧ 𝜃) ∧ 𝜂) ↔ ((𝜒 ∧ 𝜏) ∧ 𝜁))) |
| 6 | df-3an 982 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ ((𝜓 ∧ 𝜃) ∧ 𝜂)) | |
| 7 | df-3an 982 | . 2 ⊢ ((𝜒 ∧ 𝜏 ∧ 𝜁) ↔ ((𝜒 ∧ 𝜏) ∧ 𝜁)) | |
| 8 | 5, 6, 7 | 3bitr4g 223 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜁))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3anbi12d 1325 3anbi13d 1326 3anbi23d 1327 limeq 4422 smoeq 6366 tfrlemi1 6408 tfr1onlemaccex 6424 tfrcllemaccex 6437 ereq1 6617 updjud 7166 ctssdclemr 7196 tapeq1 7346 tapeq2 7347 elinp 7569 sup3exmid 9012 iccshftr 10098 iccshftl 10100 iccdil 10102 icccntr 10104 fzaddel 10163 elfzomelpfzo 10341 seq3f1olemstep 10640 seq3f1olemp 10641 sumeq1 11585 summodclem2 11612 summodc 11613 zsumdc 11614 prodmodclem2 11807 prodmodc 11808 divalglemnn 12148 divalglemeunn 12151 divalglemeuneg 12153 dfgcd2 12254 pythagtriplem18 12523 pythagtriplem19 12524 ctiunct 12730 ssomct 12735 isstruct2im 12761 isstruct2r 12762 ptex 13014 imasmnd2 13202 imasgrp2 13364 isrngd 13633 imasrng 13636 isringd 13721 imasring 13744 subrngpropd 13896 issubrg3 13927 islmod 13971 lmodlema 13972 islmodd 13973 lmodprop2d 14028 fiinopn 14394 lmfval 14582 upxp 14662 ivthdich 15043 2irrexpqap 15368 dceqnconst 15863 dcapnconst 15864 |
| Copyright terms: Public domain | W3C validator |