| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anbi123d | GIF version | ||
| Description: Deduction joining 3 equivalences to form equivalence of conjunctions. (Contributed by NM, 22-Apr-1994.) |
| Ref | Expression |
|---|---|
| bi3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bi3d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| bi3d.3 | ⊢ (𝜑 → (𝜂 ↔ 𝜁)) |
| Ref | Expression |
|---|---|
| 3anbi123d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi3d.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bi3d.2 | . . . 4 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 3 | 1, 2 | anbi12d 473 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) ↔ (𝜒 ∧ 𝜏))) |
| 4 | bi3d.3 | . . 3 ⊢ (𝜑 → (𝜂 ↔ 𝜁)) | |
| 5 | 3, 4 | anbi12d 473 | . 2 ⊢ (𝜑 → (((𝜓 ∧ 𝜃) ∧ 𝜂) ↔ ((𝜒 ∧ 𝜏) ∧ 𝜁))) |
| 6 | df-3an 982 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ ((𝜓 ∧ 𝜃) ∧ 𝜂)) | |
| 7 | df-3an 982 | . 2 ⊢ ((𝜒 ∧ 𝜏 ∧ 𝜁) ↔ ((𝜒 ∧ 𝜏) ∧ 𝜁)) | |
| 8 | 5, 6, 7 | 3bitr4g 223 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜁))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3anbi12d 1325 3anbi13d 1326 3anbi23d 1327 limeq 4423 smoeq 6375 tfrlemi1 6417 tfr1onlemaccex 6433 tfrcllemaccex 6446 ereq1 6626 updjud 7183 ctssdclemr 7213 tapeq1 7363 tapeq2 7364 elinp 7586 sup3exmid 9029 iccshftr 10115 iccshftl 10117 iccdil 10119 icccntr 10121 fzaddel 10180 elfzomelpfzo 10358 seq3f1olemstep 10657 seq3f1olemp 10658 sumeq1 11608 summodclem2 11635 summodc 11636 zsumdc 11637 prodmodclem2 11830 prodmodc 11831 divalglemnn 12171 divalglemeunn 12174 divalglemeuneg 12176 dfgcd2 12277 pythagtriplem18 12546 pythagtriplem19 12547 ctiunct 12753 ssomct 12758 isstruct2im 12784 isstruct2r 12785 ptex 13038 imasmnd2 13226 imasgrp2 13388 isrngd 13657 imasrng 13660 isringd 13745 imasring 13768 subrngpropd 13920 issubrg3 13951 islmod 13995 lmodlema 13996 islmodd 13997 lmodprop2d 14052 fiinopn 14418 lmfval 14606 upxp 14686 ivthdich 15067 2irrexpqap 15392 dceqnconst 15932 dcapnconst 15933 |
| Copyright terms: Public domain | W3C validator |