Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3anbi123d | GIF version |
Description: Deduction joining 3 equivalences to form equivalence of conjunctions. (Contributed by NM, 22-Apr-1994.) |
Ref | Expression |
---|---|
bi3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bi3d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
bi3d.3 | ⊢ (𝜑 → (𝜂 ↔ 𝜁)) |
Ref | Expression |
---|---|
3anbi123d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi3d.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bi3d.2 | . . . 4 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
3 | 1, 2 | anbi12d 465 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) ↔ (𝜒 ∧ 𝜏))) |
4 | bi3d.3 | . . 3 ⊢ (𝜑 → (𝜂 ↔ 𝜁)) | |
5 | 3, 4 | anbi12d 465 | . 2 ⊢ (𝜑 → (((𝜓 ∧ 𝜃) ∧ 𝜂) ↔ ((𝜒 ∧ 𝜏) ∧ 𝜁))) |
6 | df-3an 965 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ ((𝜓 ∧ 𝜃) ∧ 𝜂)) | |
7 | df-3an 965 | . 2 ⊢ ((𝜒 ∧ 𝜏 ∧ 𝜁) ↔ ((𝜒 ∧ 𝜏) ∧ 𝜁)) | |
8 | 5, 6, 7 | 3bitr4g 222 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜁))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 965 |
This theorem is referenced by: 3anbi12d 1292 3anbi13d 1293 3anbi23d 1294 limeq 4332 smoeq 6227 tfrlemi1 6269 tfr1onlemaccex 6285 tfrcllemaccex 6298 ereq1 6476 updjud 7012 ctssdclemr 7042 elinp 7373 sup3exmid 8807 iccshftr 9876 iccshftl 9878 iccdil 9880 icccntr 9882 fzaddel 9939 elfzomelpfzo 10108 seq3f1olemstep 10378 seq3f1olemp 10379 sumeq1 11229 summodclem2 11256 summodc 11257 zsumdc 11258 prodmodclem2 11451 prodmodc 11452 divalglemnn 11782 divalglemeunn 11785 divalglemeuneg 11787 dfgcd2 11870 ctiunct 12128 isstruct2im 12147 isstruct2r 12148 fiinopn 12349 lmfval 12539 upxp 12619 2irrexpqap 13242 dceqnconst 13579 dcapnconst 13580 |
Copyright terms: Public domain | W3C validator |