ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anbi123d GIF version

Theorem 3anbi123d 1302
Description: Deduction joining 3 equivalences to form equivalence of conjunctions. (Contributed by NM, 22-Apr-1994.)
Hypotheses
Ref Expression
bi3d.1 (𝜑 → (𝜓𝜒))
bi3d.2 (𝜑 → (𝜃𝜏))
bi3d.3 (𝜑 → (𝜂𝜁))
Assertion
Ref Expression
3anbi123d (𝜑 → ((𝜓𝜃𝜂) ↔ (𝜒𝜏𝜁)))

Proof of Theorem 3anbi123d
StepHypRef Expression
1 bi3d.1 . . . 4 (𝜑 → (𝜓𝜒))
2 bi3d.2 . . . 4 (𝜑 → (𝜃𝜏))
31, 2anbi12d 465 . . 3 (𝜑 → ((𝜓𝜃) ↔ (𝜒𝜏)))
4 bi3d.3 . . 3 (𝜑 → (𝜂𝜁))
53, 4anbi12d 465 . 2 (𝜑 → (((𝜓𝜃) ∧ 𝜂) ↔ ((𝜒𝜏) ∧ 𝜁)))
6 df-3an 970 . 2 ((𝜓𝜃𝜂) ↔ ((𝜓𝜃) ∧ 𝜂))
7 df-3an 970 . 2 ((𝜒𝜏𝜁) ↔ ((𝜒𝜏) ∧ 𝜁))
85, 6, 73bitr4g 222 1 (𝜑 → ((𝜓𝜃𝜂) ↔ (𝜒𝜏𝜁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  3anbi12d  1303  3anbi13d  1304  3anbi23d  1305  limeq  4354  smoeq  6254  tfrlemi1  6296  tfr1onlemaccex  6312  tfrcllemaccex  6325  ereq1  6504  updjud  7043  ctssdclemr  7073  elinp  7411  sup3exmid  8848  iccshftr  9926  iccshftl  9928  iccdil  9930  icccntr  9932  fzaddel  9990  elfzomelpfzo  10162  seq3f1olemstep  10432  seq3f1olemp  10433  sumeq1  11292  summodclem2  11319  summodc  11320  zsumdc  11321  prodmodclem2  11514  prodmodc  11515  divalglemnn  11851  divalglemeunn  11854  divalglemeuneg  11856  dfgcd2  11943  pythagtriplem18  12209  pythagtriplem19  12210  ctiunct  12369  ssomct  12374  isstruct2im  12400  isstruct2r  12401  fiinopn  12602  lmfval  12792  upxp  12872  2irrexpqap  13496  dceqnconst  13898  dcapnconst  13899
  Copyright terms: Public domain W3C validator