| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3anbi123d | GIF version | ||
| Description: Deduction joining 3 equivalences to form equivalence of conjunctions. (Contributed by NM, 22-Apr-1994.) | 
| Ref | Expression | 
|---|---|
| bi3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| bi3d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | 
| bi3d.3 | ⊢ (𝜑 → (𝜂 ↔ 𝜁)) | 
| Ref | Expression | 
|---|---|
| 3anbi123d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜁))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bi3d.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bi3d.2 | . . . 4 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 3 | 1, 2 | anbi12d 473 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) ↔ (𝜒 ∧ 𝜏))) | 
| 4 | bi3d.3 | . . 3 ⊢ (𝜑 → (𝜂 ↔ 𝜁)) | |
| 5 | 3, 4 | anbi12d 473 | . 2 ⊢ (𝜑 → (((𝜓 ∧ 𝜃) ∧ 𝜂) ↔ ((𝜒 ∧ 𝜏) ∧ 𝜁))) | 
| 6 | df-3an 982 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ ((𝜓 ∧ 𝜃) ∧ 𝜂)) | |
| 7 | df-3an 982 | . 2 ⊢ ((𝜒 ∧ 𝜏 ∧ 𝜁) ↔ ((𝜒 ∧ 𝜏) ∧ 𝜁)) | |
| 8 | 5, 6, 7 | 3bitr4g 223 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜁))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: 3anbi12d 1324 3anbi13d 1325 3anbi23d 1326 limeq 4412 smoeq 6348 tfrlemi1 6390 tfr1onlemaccex 6406 tfrcllemaccex 6419 ereq1 6599 updjud 7148 ctssdclemr 7178 tapeq1 7319 tapeq2 7320 elinp 7541 sup3exmid 8984 iccshftr 10069 iccshftl 10071 iccdil 10073 icccntr 10075 fzaddel 10134 elfzomelpfzo 10307 seq3f1olemstep 10606 seq3f1olemp 10607 sumeq1 11520 summodclem2 11547 summodc 11548 zsumdc 11549 prodmodclem2 11742 prodmodc 11743 divalglemnn 12083 divalglemeunn 12086 divalglemeuneg 12088 dfgcd2 12181 pythagtriplem18 12450 pythagtriplem19 12451 ctiunct 12657 ssomct 12662 isstruct2im 12688 isstruct2r 12689 ptex 12935 imasgrp2 13240 isrngd 13509 imasrng 13512 isringd 13597 imasring 13620 subrngpropd 13772 issubrg3 13803 islmod 13847 lmodlema 13848 islmodd 13849 lmodprop2d 13904 fiinopn 14240 lmfval 14428 upxp 14508 ivthdich 14889 2irrexpqap 15214 dceqnconst 15704 dcapnconst 15705 | 
| Copyright terms: Public domain | W3C validator |