Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3anbi123d | GIF version |
Description: Deduction joining 3 equivalences to form equivalence of conjunctions. (Contributed by NM, 22-Apr-1994.) |
Ref | Expression |
---|---|
bi3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bi3d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
bi3d.3 | ⊢ (𝜑 → (𝜂 ↔ 𝜁)) |
Ref | Expression |
---|---|
3anbi123d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi3d.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bi3d.2 | . . . 4 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
3 | 1, 2 | anbi12d 465 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) ↔ (𝜒 ∧ 𝜏))) |
4 | bi3d.3 | . . 3 ⊢ (𝜑 → (𝜂 ↔ 𝜁)) | |
5 | 3, 4 | anbi12d 465 | . 2 ⊢ (𝜑 → (((𝜓 ∧ 𝜃) ∧ 𝜂) ↔ ((𝜒 ∧ 𝜏) ∧ 𝜁))) |
6 | df-3an 970 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ ((𝜓 ∧ 𝜃) ∧ 𝜂)) | |
7 | df-3an 970 | . 2 ⊢ ((𝜒 ∧ 𝜏 ∧ 𝜁) ↔ ((𝜒 ∧ 𝜏) ∧ 𝜁)) | |
8 | 5, 6, 7 | 3bitr4g 222 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜁))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: 3anbi12d 1303 3anbi13d 1304 3anbi23d 1305 limeq 4354 smoeq 6254 tfrlemi1 6296 tfr1onlemaccex 6312 tfrcllemaccex 6325 ereq1 6504 updjud 7043 ctssdclemr 7073 elinp 7411 sup3exmid 8848 iccshftr 9926 iccshftl 9928 iccdil 9930 icccntr 9932 fzaddel 9990 elfzomelpfzo 10162 seq3f1olemstep 10432 seq3f1olemp 10433 sumeq1 11292 summodclem2 11319 summodc 11320 zsumdc 11321 prodmodclem2 11514 prodmodc 11515 divalglemnn 11851 divalglemeunn 11854 divalglemeuneg 11856 dfgcd2 11943 pythagtriplem18 12209 pythagtriplem19 12210 ctiunct 12369 ssomct 12374 isstruct2im 12400 isstruct2r 12401 fiinopn 12602 lmfval 12792 upxp 12872 2irrexpqap 13496 dceqnconst 13898 dcapnconst 13899 |
Copyright terms: Public domain | W3C validator |