| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anbi123d | GIF version | ||
| Description: Deduction joining 3 equivalences to form equivalence of conjunctions. (Contributed by NM, 22-Apr-1994.) |
| Ref | Expression |
|---|---|
| bi3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bi3d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| bi3d.3 | ⊢ (𝜑 → (𝜂 ↔ 𝜁)) |
| Ref | Expression |
|---|---|
| 3anbi123d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi3d.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bi3d.2 | . . . 4 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 3 | 1, 2 | anbi12d 473 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) ↔ (𝜒 ∧ 𝜏))) |
| 4 | bi3d.3 | . . 3 ⊢ (𝜑 → (𝜂 ↔ 𝜁)) | |
| 5 | 3, 4 | anbi12d 473 | . 2 ⊢ (𝜑 → (((𝜓 ∧ 𝜃) ∧ 𝜂) ↔ ((𝜒 ∧ 𝜏) ∧ 𝜁))) |
| 6 | df-3an 983 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ ((𝜓 ∧ 𝜃) ∧ 𝜂)) | |
| 7 | df-3an 983 | . 2 ⊢ ((𝜒 ∧ 𝜏 ∧ 𝜁) ↔ ((𝜒 ∧ 𝜏) ∧ 𝜁)) | |
| 8 | 5, 6, 7 | 3bitr4g 223 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜁))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3anbi12d 1326 3anbi13d 1327 3anbi23d 1328 limeq 4432 smoeq 6389 tfrlemi1 6431 tfr1onlemaccex 6447 tfrcllemaccex 6460 ereq1 6640 updjud 7199 ctssdclemr 7229 tapeq1 7384 tapeq2 7385 elinp 7607 sup3exmid 9050 iccshftr 10136 iccshftl 10138 iccdil 10140 icccntr 10142 fzaddel 10201 elfzomelpfzo 10382 seq3f1olemstep 10681 seq3f1olemp 10682 wrdl1s1 11107 sumeq1 11741 summodclem2 11768 summodc 11769 zsumdc 11770 prodmodclem2 11963 prodmodc 11964 divalglemnn 12304 divalglemeunn 12307 divalglemeuneg 12309 dfgcd2 12410 pythagtriplem18 12679 pythagtriplem19 12680 ctiunct 12886 ssomct 12891 isstruct2im 12917 isstruct2r 12918 ptex 13171 imasmnd2 13359 imasgrp2 13521 isrngd 13790 imasrng 13793 isringd 13878 imasring 13901 subrngpropd 14053 issubrg3 14084 islmod 14128 lmodlema 14129 islmodd 14130 lmodprop2d 14185 fiinopn 14551 lmfval 14739 upxp 14819 ivthdich 15200 2irrexpqap 15525 dceqnconst 16140 dcapnconst 16141 |
| Copyright terms: Public domain | W3C validator |