![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3anbi123d | GIF version |
Description: Deduction joining 3 equivalences to form equivalence of conjunctions. (Contributed by NM, 22-Apr-1994.) |
Ref | Expression |
---|---|
bi3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bi3d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
bi3d.3 | ⊢ (𝜑 → (𝜂 ↔ 𝜁)) |
Ref | Expression |
---|---|
3anbi123d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi3d.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bi3d.2 | . . . 4 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
3 | 1, 2 | anbi12d 458 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) ↔ (𝜒 ∧ 𝜏))) |
4 | bi3d.3 | . . 3 ⊢ (𝜑 → (𝜂 ↔ 𝜁)) | |
5 | 3, 4 | anbi12d 458 | . 2 ⊢ (𝜑 → (((𝜓 ∧ 𝜃) ∧ 𝜂) ↔ ((𝜒 ∧ 𝜏) ∧ 𝜁))) |
6 | df-3an 927 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ ((𝜓 ∧ 𝜃) ∧ 𝜂)) | |
7 | df-3an 927 | . 2 ⊢ ((𝜒 ∧ 𝜏 ∧ 𝜁) ↔ ((𝜒 ∧ 𝜏) ∧ 𝜁)) | |
8 | 5, 6, 7 | 3bitr4g 222 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜁))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 925 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 927 |
This theorem is referenced by: 3anbi12d 1250 3anbi13d 1251 3anbi23d 1252 limeq 4213 smoeq 6069 tfrlemi1 6111 tfr1onlemaccex 6127 tfrcllemaccex 6140 ereq1 6313 updjud 6827 elinp 7094 iccshftr 9472 iccshftl 9474 iccdil 9476 icccntr 9478 fzaddel 9534 elfzomelpfzo 9703 seq3f1olemstep 9991 seq3f1olemp 9992 sumeq1 10805 isummolem2 10833 isummo 10834 zisum 10835 divalglemnn 11257 divalglemeunn 11260 divalglemeuneg 11262 dfgcd2 11342 isstruct2im 11565 isstruct2r 11566 fiinopn 11764 |
Copyright terms: Public domain | W3C validator |