| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anbi123d | GIF version | ||
| Description: Deduction joining 3 equivalences to form equivalence of conjunctions. (Contributed by NM, 22-Apr-1994.) |
| Ref | Expression |
|---|---|
| bi3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bi3d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| bi3d.3 | ⊢ (𝜑 → (𝜂 ↔ 𝜁)) |
| Ref | Expression |
|---|---|
| 3anbi123d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi3d.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bi3d.2 | . . . 4 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 3 | 1, 2 | anbi12d 473 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) ↔ (𝜒 ∧ 𝜏))) |
| 4 | bi3d.3 | . . 3 ⊢ (𝜑 → (𝜂 ↔ 𝜁)) | |
| 5 | 3, 4 | anbi12d 473 | . 2 ⊢ (𝜑 → (((𝜓 ∧ 𝜃) ∧ 𝜂) ↔ ((𝜒 ∧ 𝜏) ∧ 𝜁))) |
| 6 | df-3an 982 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ ((𝜓 ∧ 𝜃) ∧ 𝜂)) | |
| 7 | df-3an 982 | . 2 ⊢ ((𝜒 ∧ 𝜏 ∧ 𝜁) ↔ ((𝜒 ∧ 𝜏) ∧ 𝜁)) | |
| 8 | 5, 6, 7 | 3bitr4g 223 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜁))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3anbi12d 1324 3anbi13d 1325 3anbi23d 1326 limeq 4413 smoeq 6357 tfrlemi1 6399 tfr1onlemaccex 6415 tfrcllemaccex 6428 ereq1 6608 updjud 7157 ctssdclemr 7187 tapeq1 7337 tapeq2 7338 elinp 7560 sup3exmid 9003 iccshftr 10088 iccshftl 10090 iccdil 10092 icccntr 10094 fzaddel 10153 elfzomelpfzo 10326 seq3f1olemstep 10625 seq3f1olemp 10626 sumeq1 11539 summodclem2 11566 summodc 11567 zsumdc 11568 prodmodclem2 11761 prodmodc 11762 divalglemnn 12102 divalglemeunn 12105 divalglemeuneg 12107 dfgcd2 12208 pythagtriplem18 12477 pythagtriplem19 12478 ctiunct 12684 ssomct 12689 isstruct2im 12715 isstruct2r 12716 ptex 12968 imasmnd2 13156 imasgrp2 13318 isrngd 13587 imasrng 13590 isringd 13675 imasring 13698 subrngpropd 13850 issubrg3 13881 islmod 13925 lmodlema 13926 islmodd 13927 lmodprop2d 13982 fiinopn 14348 lmfval 14536 upxp 14616 ivthdich 14997 2irrexpqap 15322 dceqnconst 15817 dcapnconst 15818 |
| Copyright terms: Public domain | W3C validator |