| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anbi123d | GIF version | ||
| Description: Deduction joining 3 equivalences to form equivalence of conjunctions. (Contributed by NM, 22-Apr-1994.) |
| Ref | Expression |
|---|---|
| bi3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bi3d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| bi3d.3 | ⊢ (𝜑 → (𝜂 ↔ 𝜁)) |
| Ref | Expression |
|---|---|
| 3anbi123d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi3d.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bi3d.2 | . . . 4 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 3 | 1, 2 | anbi12d 473 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) ↔ (𝜒 ∧ 𝜏))) |
| 4 | bi3d.3 | . . 3 ⊢ (𝜑 → (𝜂 ↔ 𝜁)) | |
| 5 | 3, 4 | anbi12d 473 | . 2 ⊢ (𝜑 → (((𝜓 ∧ 𝜃) ∧ 𝜂) ↔ ((𝜒 ∧ 𝜏) ∧ 𝜁))) |
| 6 | df-3an 1004 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ ((𝜓 ∧ 𝜃) ∧ 𝜂)) | |
| 7 | df-3an 1004 | . 2 ⊢ ((𝜒 ∧ 𝜏 ∧ 𝜁) ↔ ((𝜒 ∧ 𝜏) ∧ 𝜁)) | |
| 8 | 5, 6, 7 | 3bitr4g 223 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜁))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: 3anbi12d 1347 3anbi13d 1348 3anbi23d 1349 limeq 4467 smoeq 6434 tfrlemi1 6476 tfr1onlemaccex 6492 tfrcllemaccex 6505 ereq1 6685 updjud 7245 ctssdclemr 7275 tapeq1 7434 tapeq2 7435 elinp 7657 sup3exmid 9100 iccshftr 10186 iccshftl 10188 iccdil 10190 icccntr 10192 fzaddel 10251 elfzomelpfzo 10432 seq3f1olemstep 10731 seq3f1olemp 10732 wrdl1s1 11158 sumeq1 11861 summodclem2 11888 summodc 11889 zsumdc 11890 prodmodclem2 12083 prodmodc 12084 divalglemnn 12424 divalglemeunn 12427 divalglemeuneg 12429 dfgcd2 12530 pythagtriplem18 12799 pythagtriplem19 12800 ctiunct 13006 ssomct 13011 isstruct2im 13037 isstruct2r 13038 ptex 13292 imasmnd2 13480 imasgrp2 13642 isrngd 13911 imasrng 13914 isringd 13999 imasring 14022 subrngpropd 14174 issubrg3 14205 islmod 14249 lmodlema 14250 islmodd 14251 lmodprop2d 14306 fiinopn 14672 lmfval 14860 upxp 14940 ivthdich 15321 2irrexpqap 15646 wksfval 16028 iswlk 16029 dceqnconst 16387 dcapnconst 16388 |
| Copyright terms: Public domain | W3C validator |