ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubg3 GIF version

Theorem issubg3 13398
Description: A subgroup is a symmetric submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypothesis
Ref Expression
issubg3.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
issubg3 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐼   𝑥,𝑆

Proof of Theorem issubg3
Dummy variables 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . . 4 (0g𝐺) = (0g𝐺)
21subg0cl 13388 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑆)
32a1i 9 . 2 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑆))
41subm0cl 13180 . . . 4 (𝑆 ∈ (SubMnd‘𝐺) → (0g𝐺) ∈ 𝑆)
54adantr 276 . . 3 ((𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆) → (0g𝐺) ∈ 𝑆)
65a1i 9 . 2 (𝐺 ∈ Grp → ((𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆) → (0g𝐺) ∈ 𝑆))
7 elex2 2779 . . . . . . . 8 ((0g𝐺) ∈ 𝑆 → ∃𝑤 𝑤𝑆)
8 id 19 . . . . . . . 8 ((0g𝐺) ∈ 𝑆 → (0g𝐺) ∈ 𝑆)
97, 82thd 175 . . . . . . 7 ((0g𝐺) ∈ 𝑆 → (∃𝑤 𝑤𝑆 ↔ (0g𝐺) ∈ 𝑆))
109adantl 277 . . . . . 6 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝑆) → (∃𝑤 𝑤𝑆 ↔ (0g𝐺) ∈ 𝑆))
11 r19.26 2623 . . . . . . 7 (∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆) ↔ (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆))
1211a1i 9 . . . . . 6 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝑆) → (∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆) ↔ (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
1310, 123anbi23d 1326 . . . . 5 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝑆) → ((𝑆 ⊆ (Base‘𝐺) ∧ ∃𝑤 𝑤𝑆 ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆)) ↔ (𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆))))
14 anass 401 . . . . . 6 ((((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆) ↔ ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆) ∧ (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
15 df-3an 982 . . . . . . 7 ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆) ↔ ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆))
1615anbi1i 458 . . . . . 6 (((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆) ↔ (((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆))
17 df-3an 982 . . . . . 6 ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)) ↔ ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆) ∧ (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
1814, 16, 173bitr4ri 213 . . . . 5 ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)) ↔ ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆))
1913, 18bitrdi 196 . . . 4 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝑆) → ((𝑆 ⊆ (Base‘𝐺) ∧ ∃𝑤 𝑤𝑆 ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆)) ↔ ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
20 eqid 2196 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
21 eqid 2196 . . . . . 6 (+g𝐺) = (+g𝐺)
22 issubg3.i . . . . . 6 𝐼 = (invg𝐺)
2320, 21, 22issubg2m 13395 . . . . 5 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ⊆ (Base‘𝐺) ∧ ∃𝑤 𝑤𝑆 ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))))
2423adantr 276 . . . 4 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝑆) → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ⊆ (Base‘𝐺) ∧ ∃𝑤 𝑤𝑆 ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))))
25 grpmnd 13209 . . . . . . 7 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
2620, 1, 21issubm 13174 . . . . . . 7 (𝐺 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝐺) ↔ (𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆)))
2725, 26syl 14 . . . . . 6 (𝐺 ∈ Grp → (𝑆 ∈ (SubMnd‘𝐺) ↔ (𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆)))
2827anbi1d 465 . . . . 5 (𝐺 ∈ Grp → ((𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆) ↔ ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
2928adantr 276 . . . 4 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝑆) → ((𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆) ↔ ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
3019, 24, 293bitr4d 220 . . 3 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝑆) → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
3130ex 115 . 2 (𝐺 ∈ Grp → ((0g𝐺) ∈ 𝑆 → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆))))
323, 6, 31pm5.21ndd 706 1 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wex 1506  wcel 2167  wral 2475  wss 3157  cfv 5259  (class class class)co 5925  Basecbs 12703  +gcplusg 12780  0gc0g 12958  Mndcmnd 13118  SubMndcsubmnd 13160  Grpcgrp 13202  invgcminusg 13203  SubGrpcsubg 13373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-submnd 13162  df-grp 13205  df-minusg 13206  df-subg 13376
This theorem is referenced by:  subgsubm  13402  0subg  13405  ghmeql  13473
  Copyright terms: Public domain W3C validator