Step | Hyp | Ref
| Expression |
1 | | eqid 2177 |
. . . 4
β’
(0gβπΊ) = (0gβπΊ) |
2 | 1 | subg0cl 13042 |
. . 3
β’ (π β (SubGrpβπΊ) β
(0gβπΊ)
β π) |
3 | 2 | a1i 9 |
. 2
β’ (πΊ β Grp β (π β (SubGrpβπΊ) β
(0gβπΊ)
β π)) |
4 | 1 | subm0cl 12869 |
. . . 4
β’ (π β (SubMndβπΊ) β
(0gβπΊ)
β π) |
5 | 4 | adantr 276 |
. . 3
β’ ((π β (SubMndβπΊ) β§ βπ₯ β π (πΌβπ₯) β π) β (0gβπΊ) β π) |
6 | 5 | a1i 9 |
. 2
β’ (πΊ β Grp β ((π β (SubMndβπΊ) β§ βπ₯ β π (πΌβπ₯) β π) β (0gβπΊ) β π)) |
7 | | elex2 2754 |
. . . . . . . 8
β’
((0gβπΊ) β π β βπ€ π€ β π) |
8 | | id 19 |
. . . . . . . 8
β’
((0gβπΊ) β π β (0gβπΊ) β π) |
9 | 7, 8 | 2thd 175 |
. . . . . . 7
β’
((0gβπΊ) β π β (βπ€ π€ β π β (0gβπΊ) β π)) |
10 | 9 | adantl 277 |
. . . . . 6
β’ ((πΊ β Grp β§
(0gβπΊ)
β π) β
(βπ€ π€ β π β (0gβπΊ) β π)) |
11 | | r19.26 2603 |
. . . . . . 7
β’
(βπ₯ β
π (βπ¦ β π (π₯(+gβπΊ)π¦) β π β§ (πΌβπ₯) β π) β (βπ₯ β π βπ¦ β π (π₯(+gβπΊ)π¦) β π β§ βπ₯ β π (πΌβπ₯) β π)) |
12 | 11 | a1i 9 |
. . . . . 6
β’ ((πΊ β Grp β§
(0gβπΊ)
β π) β
(βπ₯ β π (βπ¦ β π (π₯(+gβπΊ)π¦) β π β§ (πΌβπ₯) β π) β (βπ₯ β π βπ¦ β π (π₯(+gβπΊ)π¦) β π β§ βπ₯ β π (πΌβπ₯) β π))) |
13 | 10, 12 | 3anbi23d 1315 |
. . . . 5
β’ ((πΊ β Grp β§
(0gβπΊ)
β π) β ((π β (BaseβπΊ) β§ βπ€ π€ β π β§ βπ₯ β π (βπ¦ β π (π₯(+gβπΊ)π¦) β π β§ (πΌβπ₯) β π)) β (π β (BaseβπΊ) β§ (0gβπΊ) β π β§ (βπ₯ β π βπ¦ β π (π₯(+gβπΊ)π¦) β π β§ βπ₯ β π (πΌβπ₯) β π)))) |
14 | | anass 401 |
. . . . . 6
β’ ((((π β (BaseβπΊ) β§
(0gβπΊ)
β π) β§
βπ₯ β π βπ¦ β π (π₯(+gβπΊ)π¦) β π) β§ βπ₯ β π (πΌβπ₯) β π) β ((π β (BaseβπΊ) β§ (0gβπΊ) β π) β§ (βπ₯ β π βπ¦ β π (π₯(+gβπΊ)π¦) β π β§ βπ₯ β π (πΌβπ₯) β π))) |
15 | | df-3an 980 |
. . . . . . 7
β’ ((π β (BaseβπΊ) β§
(0gβπΊ)
β π β§
βπ₯ β π βπ¦ β π (π₯(+gβπΊ)π¦) β π) β ((π β (BaseβπΊ) β§ (0gβπΊ) β π) β§ βπ₯ β π βπ¦ β π (π₯(+gβπΊ)π¦) β π)) |
16 | 15 | anbi1i 458 |
. . . . . 6
β’ (((π β (BaseβπΊ) β§
(0gβπΊ)
β π β§
βπ₯ β π βπ¦ β π (π₯(+gβπΊ)π¦) β π) β§ βπ₯ β π (πΌβπ₯) β π) β (((π β (BaseβπΊ) β§ (0gβπΊ) β π) β§ βπ₯ β π βπ¦ β π (π₯(+gβπΊ)π¦) β π) β§ βπ₯ β π (πΌβπ₯) β π)) |
17 | | df-3an 980 |
. . . . . 6
β’ ((π β (BaseβπΊ) β§
(0gβπΊ)
β π β§
(βπ₯ β π βπ¦ β π (π₯(+gβπΊ)π¦) β π β§ βπ₯ β π (πΌβπ₯) β π)) β ((π β (BaseβπΊ) β§ (0gβπΊ) β π) β§ (βπ₯ β π βπ¦ β π (π₯(+gβπΊ)π¦) β π β§ βπ₯ β π (πΌβπ₯) β π))) |
18 | 14, 16, 17 | 3bitr4ri 213 |
. . . . 5
β’ ((π β (BaseβπΊ) β§
(0gβπΊ)
β π β§
(βπ₯ β π βπ¦ β π (π₯(+gβπΊ)π¦) β π β§ βπ₯ β π (πΌβπ₯) β π)) β ((π β (BaseβπΊ) β§ (0gβπΊ) β π β§ βπ₯ β π βπ¦ β π (π₯(+gβπΊ)π¦) β π) β§ βπ₯ β π (πΌβπ₯) β π)) |
19 | 13, 18 | bitrdi 196 |
. . . 4
β’ ((πΊ β Grp β§
(0gβπΊ)
β π) β ((π β (BaseβπΊ) β§ βπ€ π€ β π β§ βπ₯ β π (βπ¦ β π (π₯(+gβπΊ)π¦) β π β§ (πΌβπ₯) β π)) β ((π β (BaseβπΊ) β§ (0gβπΊ) β π β§ βπ₯ β π βπ¦ β π (π₯(+gβπΊ)π¦) β π) β§ βπ₯ β π (πΌβπ₯) β π))) |
20 | | eqid 2177 |
. . . . . 6
β’
(BaseβπΊ) =
(BaseβπΊ) |
21 | | eqid 2177 |
. . . . . 6
β’
(+gβπΊ) = (+gβπΊ) |
22 | | issubg3.i |
. . . . . 6
β’ πΌ = (invgβπΊ) |
23 | 20, 21, 22 | issubg2m 13049 |
. . . . 5
β’ (πΊ β Grp β (π β (SubGrpβπΊ) β (π β (BaseβπΊ) β§ βπ€ π€ β π β§ βπ₯ β π (βπ¦ β π (π₯(+gβπΊ)π¦) β π β§ (πΌβπ₯) β π)))) |
24 | 23 | adantr 276 |
. . . 4
β’ ((πΊ β Grp β§
(0gβπΊ)
β π) β (π β (SubGrpβπΊ) β (π β (BaseβπΊ) β§ βπ€ π€ β π β§ βπ₯ β π (βπ¦ β π (π₯(+gβπΊ)π¦) β π β§ (πΌβπ₯) β π)))) |
25 | | grpmnd 12884 |
. . . . . . 7
β’ (πΊ β Grp β πΊ β Mnd) |
26 | 20, 1, 21 | issubm 12863 |
. . . . . . 7
β’ (πΊ β Mnd β (π β (SubMndβπΊ) β (π β (BaseβπΊ) β§ (0gβπΊ) β π β§ βπ₯ β π βπ¦ β π (π₯(+gβπΊ)π¦) β π))) |
27 | 25, 26 | syl 14 |
. . . . . 6
β’ (πΊ β Grp β (π β (SubMndβπΊ) β (π β (BaseβπΊ) β§ (0gβπΊ) β π β§ βπ₯ β π βπ¦ β π (π₯(+gβπΊ)π¦) β π))) |
28 | 27 | anbi1d 465 |
. . . . 5
β’ (πΊ β Grp β ((π β (SubMndβπΊ) β§ βπ₯ β π (πΌβπ₯) β π) β ((π β (BaseβπΊ) β§ (0gβπΊ) β π β§ βπ₯ β π βπ¦ β π (π₯(+gβπΊ)π¦) β π) β§ βπ₯ β π (πΌβπ₯) β π))) |
29 | 28 | adantr 276 |
. . . 4
β’ ((πΊ β Grp β§
(0gβπΊ)
β π) β ((π β (SubMndβπΊ) β§ βπ₯ β π (πΌβπ₯) β π) β ((π β (BaseβπΊ) β§ (0gβπΊ) β π β§ βπ₯ β π βπ¦ β π (π₯(+gβπΊ)π¦) β π) β§ βπ₯ β π (πΌβπ₯) β π))) |
30 | 19, 24, 29 | 3bitr4d 220 |
. . 3
β’ ((πΊ β Grp β§
(0gβπΊ)
β π) β (π β (SubGrpβπΊ) β (π β (SubMndβπΊ) β§ βπ₯ β π (πΌβπ₯) β π))) |
31 | 30 | ex 115 |
. 2
β’ (πΊ β Grp β
((0gβπΊ)
β π β (π β (SubGrpβπΊ) β (π β (SubMndβπΊ) β§ βπ₯ β π (πΌβπ₯) β π)))) |
32 | 3, 6, 31 | pm5.21ndd 705 |
1
β’ (πΊ β Grp β (π β (SubGrpβπΊ) β (π β (SubMndβπΊ) β§ βπ₯ β π (πΌβπ₯) β π))) |