| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imp3i2an | GIF version | ||
| Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 13-Apr-2022.) |
| Ref | Expression |
|---|---|
| 3imp3i2an.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| 3imp3i2an.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜏) |
| 3imp3i2an.3 | ⊢ ((𝜃 ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| 3imp3i2an | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imp3i2an.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 3imp3i2an.2 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜏) | |
| 3 | 2 | 3adant2 1018 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) |
| 4 | 3imp3i2an.3 | . 2 ⊢ ((𝜃 ∧ 𝜏) → 𝜂) | |
| 5 | 1, 3, 4 | syl2anc 411 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜂) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: pcgcd 12523 qussub 13443 lspun 14034 |
| Copyright terms: Public domain | W3C validator |