ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3imp3i2an Unicode version

Theorem 3imp3i2an 1178
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 13-Apr-2022.)
Hypotheses
Ref Expression
3imp3i2an.1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
3imp3i2an.2  |-  ( (
ph  /\  ch )  ->  ta )
3imp3i2an.3  |-  ( ( th  /\  ta )  ->  et )
Assertion
Ref Expression
3imp3i2an  |-  ( (
ph  /\  ps  /\  ch )  ->  et )

Proof of Theorem 3imp3i2an
StepHypRef Expression
1 3imp3i2an.1 . 2  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
2 3imp3i2an.2 . . 3  |-  ( (
ph  /\  ch )  ->  ta )
323adant2 1011 . 2  |-  ( (
ph  /\  ps  /\  ch )  ->  ta )
4 3imp3i2an.3 . 2  |-  ( ( th  /\  ta )  ->  et )
51, 3, 4syl2anc 409 1  |-  ( (
ph  /\  ps  /\  ch )  ->  et )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 975
This theorem is referenced by:  pcgcd  12282
  Copyright terms: Public domain W3C validator