Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl21anbrc | GIF version |
Description: Syllogism inference. (Contributed by Peter Mazsa, 18-Sep-2022.) |
Ref | Expression |
---|---|
syl21anbrc.1 | ⊢ (𝜑 → 𝜓) |
syl21anbrc.2 | ⊢ (𝜑 → 𝜒) |
syl21anbrc.3 | ⊢ (𝜑 → 𝜃) |
syl21anbrc.4 | ⊢ (𝜏 ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
Ref | Expression |
---|---|
syl21anbrc | ⊢ (𝜑 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl21anbrc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl21anbrc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | syl21anbrc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 1, 2, 3 | jca31 307 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
5 | syl21anbrc.4 | . 2 ⊢ (𝜏 ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
6 | 4, 5 | sylibr 133 | 1 ⊢ (𝜑 → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: idmhm 12692 |
Copyright terms: Public domain | W3C validator |