ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcgcd GIF version

Theorem pcgcd 12467
Description: The prime count of a GCD is the minimum of the prime counts of the arguments. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pcgcd ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑃 pCnt (𝐴 gcd 𝐵)) = if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵)))

Proof of Theorem pcgcd
StepHypRef Expression
1 pcgcd1 12466 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴))
2 iftrue 3562 . . . 4 ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) → if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵)) = (𝑃 pCnt 𝐴))
32adantl 277 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵)) = (𝑃 pCnt 𝐴))
41, 3eqtr4d 2229 . 2 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐴 gcd 𝐵)) = if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵)))
5 gcdcom 12110 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴))
653adant1 1017 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴))
76adantr 276 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴))
87oveq2d 5934 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt (𝐵 gcd 𝐴)))
9 iffalse 3565 . . . . 5 (¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) → if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵)) = (𝑃 pCnt 𝐵))
109adantl 277 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵)) = (𝑃 pCnt 𝐵))
11 pcxnn0cl 12448 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 pCnt 𝐴) ∈ ℕ0*)
12113adant3 1019 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑃 pCnt 𝐴) ∈ ℕ0*)
13 pcxnn0cl 12448 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℤ) → (𝑃 pCnt 𝐵) ∈ ℕ0*)
14 xnn0letri 9869 . . . . . . 7 (((𝑃 pCnt 𝐴) ∈ ℕ0* ∧ (𝑃 pCnt 𝐵) ∈ ℕ0*) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∨ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)))
1512, 13, 143imp3i2an 1185 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∨ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)))
1615orcanai 929 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴))
17 3ancomb 988 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ↔ (𝑃 ∈ ℙ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ))
18 pcgcd1 12466 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐵 gcd 𝐴)) = (𝑃 pCnt 𝐵))
1917, 18sylanb 284 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐵 gcd 𝐴)) = (𝑃 pCnt 𝐵))
2016, 19syldan 282 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐵 gcd 𝐴)) = (𝑃 pCnt 𝐵))
2110, 20eqtr4d 2229 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵)) = (𝑃 pCnt (𝐵 gcd 𝐴)))
228, 21eqtr4d 2229 . 2 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐴 gcd 𝐵)) = if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵)))
23 xnn0dcle 9868 . . . 4 (((𝑃 pCnt 𝐴) ∈ ℕ0* ∧ (𝑃 pCnt 𝐵) ∈ ℕ0*) → DECID (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))
2412, 13, 233imp3i2an 1185 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))
25 exmiddc 837 . . 3 (DECID (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∨ ¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)))
2624, 25syl 14 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∨ ¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)))
274, 22, 26mpjaodan 799 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑃 pCnt (𝐴 gcd 𝐵)) = if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wcel 2164  ifcif 3557   class class class wbr 4029  (class class class)co 5918  cle 8055  0*cxnn0 9303  cz 9317   gcd cgcd 12079  cprime 12245   pCnt cpc 12422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-2o 6470  df-er 6587  df-en 6795  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-xnn0 9304  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-gcd 12080  df-prm 12246  df-pc 12423
This theorem is referenced by:  pc2dvds  12468
  Copyright terms: Public domain W3C validator