![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pcgcd | GIF version |
Description: The prime count of a GCD is the minimum of the prime counts of the arguments. (Contributed by Mario Carneiro, 3-Oct-2014.) |
Ref | Expression |
---|---|
pcgcd | ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑃 pCnt (𝐴 gcd 𝐵)) = if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pcgcd1 12341 | . . 3 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴)) | |
2 | iftrue 3551 | . . . 4 ⊢ ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) → if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵)) = (𝑃 pCnt 𝐴)) | |
3 | 2 | adantl 277 | . . 3 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵)) = (𝑃 pCnt 𝐴)) |
4 | 1, 3 | eqtr4d 2223 | . 2 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐴 gcd 𝐵)) = if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵))) |
5 | gcdcom 11988 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴)) | |
6 | 5 | 3adant1 1016 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴)) |
7 | 6 | adantr 276 | . . . 4 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴)) |
8 | 7 | oveq2d 5904 | . . 3 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt (𝐵 gcd 𝐴))) |
9 | iffalse 3554 | . . . . 5 ⊢ (¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) → if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵)) = (𝑃 pCnt 𝐵)) | |
10 | 9 | adantl 277 | . . . 4 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵)) = (𝑃 pCnt 𝐵)) |
11 | pcxnn0cl 12324 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 pCnt 𝐴) ∈ ℕ0*) | |
12 | 11 | 3adant3 1018 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑃 pCnt 𝐴) ∈ ℕ0*) |
13 | pcxnn0cl 12324 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℤ) → (𝑃 pCnt 𝐵) ∈ ℕ0*) | |
14 | xnn0letri 9817 | . . . . . . 7 ⊢ (((𝑃 pCnt 𝐴) ∈ ℕ0* ∧ (𝑃 pCnt 𝐵) ∈ ℕ0*) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∨ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴))) | |
15 | 12, 13, 14 | 3imp3i2an 1184 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∨ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴))) |
16 | 15 | orcanai 929 | . . . . 5 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)) |
17 | 3ancomb 987 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ↔ (𝑃 ∈ ℙ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ)) | |
18 | pcgcd1 12341 | . . . . . 6 ⊢ (((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐵 gcd 𝐴)) = (𝑃 pCnt 𝐵)) | |
19 | 17, 18 | sylanb 284 | . . . . 5 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐵 gcd 𝐴)) = (𝑃 pCnt 𝐵)) |
20 | 16, 19 | syldan 282 | . . . 4 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐵 gcd 𝐴)) = (𝑃 pCnt 𝐵)) |
21 | 10, 20 | eqtr4d 2223 | . . 3 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵)) = (𝑃 pCnt (𝐵 gcd 𝐴))) |
22 | 8, 21 | eqtr4d 2223 | . 2 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐴 gcd 𝐵)) = if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵))) |
23 | xnn0dcle 9816 | . . . 4 ⊢ (((𝑃 pCnt 𝐴) ∈ ℕ0* ∧ (𝑃 pCnt 𝐵) ∈ ℕ0*) → DECID (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) | |
24 | 12, 13, 23 | 3imp3i2an 1184 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) |
25 | exmiddc 837 | . . 3 ⊢ (DECID (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∨ ¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))) | |
26 | 24, 25 | syl 14 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∨ ¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))) |
27 | 4, 22, 26 | mpjaodan 799 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑃 pCnt (𝐴 gcd 𝐵)) = if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 ∧ w3a 979 = wceq 1363 ∈ wcel 2158 ifcif 3546 class class class wbr 4015 (class class class)co 5888 ≤ cle 8007 ℕ0*cxnn0 9253 ℤcz 9267 gcd cgcd 11957 ℙcprime 12121 pCnt cpc 12298 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-mulrcl 7924 ax-addcom 7925 ax-mulcom 7926 ax-addass 7927 ax-mulass 7928 ax-distr 7929 ax-i2m1 7930 ax-0lt1 7931 ax-1rid 7932 ax-0id 7933 ax-rnegex 7934 ax-precex 7935 ax-cnre 7936 ax-pre-ltirr 7937 ax-pre-ltwlin 7938 ax-pre-lttrn 7939 ax-pre-apti 7940 ax-pre-ltadd 7941 ax-pre-mulgt0 7942 ax-pre-mulext 7943 ax-arch 7944 ax-caucvg 7945 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-if 3547 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-po 4308 df-iso 4309 df-iord 4378 df-on 4380 df-ilim 4381 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-isom 5237 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6155 df-2nd 6156 df-recs 6320 df-frec 6406 df-1o 6431 df-2o 6432 df-er 6549 df-en 6755 df-sup 6997 df-inf 6998 df-pnf 8008 df-mnf 8009 df-xr 8010 df-ltxr 8011 df-le 8012 df-sub 8144 df-neg 8145 df-reap 8546 df-ap 8553 df-div 8644 df-inn 8934 df-2 8992 df-3 8993 df-4 8994 df-n0 9191 df-xnn0 9254 df-z 9268 df-uz 9543 df-q 9634 df-rp 9668 df-fz 10023 df-fzo 10157 df-fl 10284 df-mod 10337 df-seqfrec 10460 df-exp 10534 df-cj 10865 df-re 10866 df-im 10867 df-rsqrt 11021 df-abs 11022 df-dvds 11809 df-gcd 11958 df-prm 12122 df-pc 12299 |
This theorem is referenced by: pc2dvds 12343 |
Copyright terms: Public domain | W3C validator |