ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcgcd GIF version

Theorem pcgcd 12727
Description: The prime count of a GCD is the minimum of the prime counts of the arguments. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pcgcd ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑃 pCnt (𝐴 gcd 𝐵)) = if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵)))

Proof of Theorem pcgcd
StepHypRef Expression
1 pcgcd1 12726 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt 𝐴))
2 iftrue 3580 . . . 4 ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) → if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵)) = (𝑃 pCnt 𝐴))
32adantl 277 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵)) = (𝑃 pCnt 𝐴))
41, 3eqtr4d 2242 . 2 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐴 gcd 𝐵)) = if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵)))
5 gcdcom 12369 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴))
653adant1 1018 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴))
76adantr 276 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴))
87oveq2d 5973 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐴 gcd 𝐵)) = (𝑃 pCnt (𝐵 gcd 𝐴)))
9 iffalse 3583 . . . . 5 (¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) → if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵)) = (𝑃 pCnt 𝐵))
109adantl 277 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵)) = (𝑃 pCnt 𝐵))
11 pcxnn0cl 12708 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 pCnt 𝐴) ∈ ℕ0*)
12113adant3 1020 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑃 pCnt 𝐴) ∈ ℕ0*)
13 pcxnn0cl 12708 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℤ) → (𝑃 pCnt 𝐵) ∈ ℕ0*)
14 xnn0letri 9945 . . . . . . 7 (((𝑃 pCnt 𝐴) ∈ ℕ0* ∧ (𝑃 pCnt 𝐵) ∈ ℕ0*) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∨ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)))
1512, 13, 143imp3i2an 1186 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∨ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)))
1615orcanai 930 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴))
17 3ancomb 989 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ↔ (𝑃 ∈ ℙ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ))
18 pcgcd1 12726 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐵 gcd 𝐴)) = (𝑃 pCnt 𝐵))
1917, 18sylanb 284 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐵 gcd 𝐴)) = (𝑃 pCnt 𝐵))
2016, 19syldan 282 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐵 gcd 𝐴)) = (𝑃 pCnt 𝐵))
2110, 20eqtr4d 2242 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵)) = (𝑃 pCnt (𝐵 gcd 𝐴)))
228, 21eqtr4d 2242 . 2 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) → (𝑃 pCnt (𝐴 gcd 𝐵)) = if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵)))
23 xnn0dcle 9944 . . . 4 (((𝑃 pCnt 𝐴) ∈ ℕ0* ∧ (𝑃 pCnt 𝐵) ∈ ℕ0*) → DECID (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))
2412, 13, 233imp3i2an 1186 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))
25 exmiddc 838 . . 3 (DECID (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∨ ¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)))
2624, 25syl 14 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ∨ ¬ (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)))
274, 22, 26mpjaodan 800 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑃 pCnt (𝐴 gcd 𝐵)) = if((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵), (𝑃 pCnt 𝐴), (𝑃 pCnt 𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 710  DECID wdc 836  w3a 981   = wceq 1373  wcel 2177  ifcif 3575   class class class wbr 4051  (class class class)co 5957  cle 8128  0*cxnn0 9378  cz 9392   gcd cgcd 12349  cprime 12504   pCnt cpc 12682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-isom 5289  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-1o 6515  df-2o 6516  df-er 6633  df-en 6841  df-sup 7101  df-inf 7102  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-n0 9316  df-xnn0 9379  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-fz 10151  df-fzo 10285  df-fl 10435  df-mod 10490  df-seqfrec 10615  df-exp 10706  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385  df-dvds 12174  df-gcd 12350  df-prm 12505  df-pc 12683
This theorem is referenced by:  pc2dvds  12728
  Copyright terms: Public domain W3C validator