| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lspun | GIF version | ||
| Description: The span of union is the span of the union of spans. (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lspss.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspss.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| lspun | ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘(𝑇 ∪ 𝑈)) = (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1002 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → 𝑊 ∈ LMod) | |
| 2 | simp2 1003 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → 𝑇 ⊆ 𝑉) | |
| 3 | simp3 1004 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ 𝑉) | |
| 4 | 2, 3 | unssd 3360 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑇 ∪ 𝑈) ⊆ 𝑉) |
| 5 | ssun1 3347 | . . . . . . 7 ⊢ 𝑇 ⊆ (𝑇 ∪ 𝑈) | |
| 6 | 5 | a1i 9 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → 𝑇 ⊆ (𝑇 ∪ 𝑈)) |
| 7 | lspss.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
| 8 | lspss.n | . . . . . . 7 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 9 | 7, 8 | lspss 14328 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑇 ∪ 𝑈) ⊆ 𝑉 ∧ 𝑇 ⊆ (𝑇 ∪ 𝑈)) → (𝑁‘𝑇) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
| 10 | 1, 4, 6, 9 | syl3anc 1252 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑇) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
| 11 | ssun2 3348 | . . . . . . 7 ⊢ 𝑈 ⊆ (𝑇 ∪ 𝑈) | |
| 12 | 11 | a1i 9 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ (𝑇 ∪ 𝑈)) |
| 13 | 7, 8 | lspss 14328 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑇 ∪ 𝑈) ⊆ 𝑉 ∧ 𝑈 ⊆ (𝑇 ∪ 𝑈)) → (𝑁‘𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
| 14 | 1, 4, 12, 13 | syl3anc 1252 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
| 15 | 10, 14 | unssd 3360 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → ((𝑁‘𝑇) ∪ (𝑁‘𝑈)) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
| 16 | 7, 8 | lspssv 14327 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑇 ∪ 𝑈) ⊆ 𝑉) → (𝑁‘(𝑇 ∪ 𝑈)) ⊆ 𝑉) |
| 17 | 1, 4, 16 | syl2anc 411 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘(𝑇 ∪ 𝑈)) ⊆ 𝑉) |
| 18 | 15, 17 | sstrd 3214 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → ((𝑁‘𝑇) ∪ (𝑁‘𝑈)) ⊆ 𝑉) |
| 19 | 7, 8 | lspssid 14329 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉) → 𝑇 ⊆ (𝑁‘𝑇)) |
| 20 | 1, 2, 19 | syl2anc 411 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → 𝑇 ⊆ (𝑁‘𝑇)) |
| 21 | 7, 8 | lspssid 14329 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ (𝑁‘𝑈)) |
| 22 | unss12 3356 | . . . 4 ⊢ ((𝑇 ⊆ (𝑁‘𝑇) ∧ 𝑈 ⊆ (𝑁‘𝑈)) → (𝑇 ∪ 𝑈) ⊆ ((𝑁‘𝑇) ∪ (𝑁‘𝑈))) | |
| 23 | 20, 21, 22 | 3imp3i2an 1188 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑇 ∪ 𝑈) ⊆ ((𝑁‘𝑇) ∪ (𝑁‘𝑈))) |
| 24 | 7, 8 | lspss 14328 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ ((𝑁‘𝑇) ∪ (𝑁‘𝑈)) ⊆ 𝑉 ∧ (𝑇 ∪ 𝑈) ⊆ ((𝑁‘𝑇) ∪ (𝑁‘𝑈))) → (𝑁‘(𝑇 ∪ 𝑈)) ⊆ (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈)))) |
| 25 | 1, 18, 23, 24 | syl3anc 1252 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘(𝑇 ∪ 𝑈)) ⊆ (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈)))) |
| 26 | 7, 8 | lspss 14328 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘(𝑇 ∪ 𝑈)) ⊆ 𝑉 ∧ ((𝑁‘𝑇) ∪ (𝑁‘𝑈)) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) → (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈))) ⊆ (𝑁‘(𝑁‘(𝑇 ∪ 𝑈)))) |
| 27 | 1, 17, 15, 26 | syl3anc 1252 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈))) ⊆ (𝑁‘(𝑁‘(𝑇 ∪ 𝑈)))) |
| 28 | 7, 8 | lspidm 14330 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑇 ∪ 𝑈) ⊆ 𝑉) → (𝑁‘(𝑁‘(𝑇 ∪ 𝑈))) = (𝑁‘(𝑇 ∪ 𝑈))) |
| 29 | 1, 4, 28 | syl2anc 411 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘(𝑁‘(𝑇 ∪ 𝑈))) = (𝑁‘(𝑇 ∪ 𝑈))) |
| 30 | 27, 29 | sseqtrd 3242 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈))) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
| 31 | 25, 30 | eqssd 3221 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘(𝑇 ∪ 𝑈)) = (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 983 = wceq 1375 ∈ wcel 2180 ∪ cun 3175 ⊆ wss 3177 ‘cfv 5294 Basecbs 12998 LModclmod 14216 LSpanclspn 14315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-pre-ltirr 8079 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-pnf 8151 df-mnf 8152 df-ltxr 8154 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-ndx 13001 df-slot 13002 df-base 13004 df-sets 13005 df-plusg 13089 df-mulr 13090 df-sca 13092 df-vsca 13093 df-0g 13257 df-mgm 13355 df-sgrp 13401 df-mnd 13416 df-grp 13502 df-minusg 13503 df-sbg 13504 df-mgp 13850 df-ur 13889 df-ring 13927 df-lmod 14218 df-lssm 14282 df-lsp 14316 |
| This theorem is referenced by: lspun0 14354 |
| Copyright terms: Public domain | W3C validator |