ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspun GIF version

Theorem lspun 13958
Description: The span of union is the span of the union of spans. (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspss.v 𝑉 = (Base‘𝑊)
lspss.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspun ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘(𝑇𝑈)) = (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))))

Proof of Theorem lspun
StepHypRef Expression
1 simp1 999 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → 𝑊 ∈ LMod)
2 simp2 1000 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → 𝑇𝑉)
3 simp3 1001 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → 𝑈𝑉)
42, 3unssd 3339 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑇𝑈) ⊆ 𝑉)
5 ssun1 3326 . . . . . . 7 𝑇 ⊆ (𝑇𝑈)
65a1i 9 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → 𝑇 ⊆ (𝑇𝑈))
7 lspss.v . . . . . . 7 𝑉 = (Base‘𝑊)
8 lspss.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
97, 8lspss 13955 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑇𝑈) ⊆ 𝑉𝑇 ⊆ (𝑇𝑈)) → (𝑁𝑇) ⊆ (𝑁‘(𝑇𝑈)))
101, 4, 6, 9syl3anc 1249 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁𝑇) ⊆ (𝑁‘(𝑇𝑈)))
11 ssun2 3327 . . . . . . 7 𝑈 ⊆ (𝑇𝑈)
1211a1i 9 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → 𝑈 ⊆ (𝑇𝑈))
137, 8lspss 13955 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑇𝑈) ⊆ 𝑉𝑈 ⊆ (𝑇𝑈)) → (𝑁𝑈) ⊆ (𝑁‘(𝑇𝑈)))
141, 4, 12, 13syl3anc 1249 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁𝑈) ⊆ (𝑁‘(𝑇𝑈)))
1510, 14unssd 3339 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → ((𝑁𝑇) ∪ (𝑁𝑈)) ⊆ (𝑁‘(𝑇𝑈)))
167, 8lspssv 13954 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑇𝑈) ⊆ 𝑉) → (𝑁‘(𝑇𝑈)) ⊆ 𝑉)
171, 4, 16syl2anc 411 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘(𝑇𝑈)) ⊆ 𝑉)
1815, 17sstrd 3193 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → ((𝑁𝑇) ∪ (𝑁𝑈)) ⊆ 𝑉)
197, 8lspssid 13956 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑉) → 𝑇 ⊆ (𝑁𝑇))
201, 2, 19syl2anc 411 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → 𝑇 ⊆ (𝑁𝑇))
217, 8lspssid 13956 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → 𝑈 ⊆ (𝑁𝑈))
22 unss12 3335 . . . 4 ((𝑇 ⊆ (𝑁𝑇) ∧ 𝑈 ⊆ (𝑁𝑈)) → (𝑇𝑈) ⊆ ((𝑁𝑇) ∪ (𝑁𝑈)))
2320, 21, 223imp3i2an 1185 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑇𝑈) ⊆ ((𝑁𝑇) ∪ (𝑁𝑈)))
247, 8lspss 13955 . . 3 ((𝑊 ∈ LMod ∧ ((𝑁𝑇) ∪ (𝑁𝑈)) ⊆ 𝑉 ∧ (𝑇𝑈) ⊆ ((𝑁𝑇) ∪ (𝑁𝑈))) → (𝑁‘(𝑇𝑈)) ⊆ (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))))
251, 18, 23, 24syl3anc 1249 . 2 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘(𝑇𝑈)) ⊆ (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))))
267, 8lspss 13955 . . . 4 ((𝑊 ∈ LMod ∧ (𝑁‘(𝑇𝑈)) ⊆ 𝑉 ∧ ((𝑁𝑇) ∪ (𝑁𝑈)) ⊆ (𝑁‘(𝑇𝑈))) → (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))) ⊆ (𝑁‘(𝑁‘(𝑇𝑈))))
271, 17, 15, 26syl3anc 1249 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))) ⊆ (𝑁‘(𝑁‘(𝑇𝑈))))
287, 8lspidm 13957 . . . 4 ((𝑊 ∈ LMod ∧ (𝑇𝑈) ⊆ 𝑉) → (𝑁‘(𝑁‘(𝑇𝑈))) = (𝑁‘(𝑇𝑈)))
291, 4, 28syl2anc 411 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘(𝑁‘(𝑇𝑈))) = (𝑁‘(𝑇𝑈)))
3027, 29sseqtrd 3221 . 2 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))) ⊆ (𝑁‘(𝑇𝑈)))
3125, 30eqssd 3200 1 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘(𝑇𝑈)) = (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1364  wcel 2167  cun 3155  wss 3157  cfv 5258  Basecbs 12678  LModclmod 13843  LSpanclspn 13942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-sca 12771  df-vsca 12772  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-sbg 13137  df-mgp 13477  df-ur 13516  df-ring 13554  df-lmod 13845  df-lssm 13909  df-lsp 13943
This theorem is referenced by:  lspun0  13981
  Copyright terms: Public domain W3C validator