| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lspun | GIF version | ||
| Description: The span of union is the span of the union of spans. (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lspss.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspss.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| lspun | ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘(𝑇 ∪ 𝑈)) = (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 999 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → 𝑊 ∈ LMod) | |
| 2 | simp2 1000 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → 𝑇 ⊆ 𝑉) | |
| 3 | simp3 1001 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ 𝑉) | |
| 4 | 2, 3 | unssd 3339 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑇 ∪ 𝑈) ⊆ 𝑉) |
| 5 | ssun1 3326 | . . . . . . 7 ⊢ 𝑇 ⊆ (𝑇 ∪ 𝑈) | |
| 6 | 5 | a1i 9 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → 𝑇 ⊆ (𝑇 ∪ 𝑈)) |
| 7 | lspss.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
| 8 | lspss.n | . . . . . . 7 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 9 | 7, 8 | lspss 13955 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑇 ∪ 𝑈) ⊆ 𝑉 ∧ 𝑇 ⊆ (𝑇 ∪ 𝑈)) → (𝑁‘𝑇) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
| 10 | 1, 4, 6, 9 | syl3anc 1249 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑇) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
| 11 | ssun2 3327 | . . . . . . 7 ⊢ 𝑈 ⊆ (𝑇 ∪ 𝑈) | |
| 12 | 11 | a1i 9 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ (𝑇 ∪ 𝑈)) |
| 13 | 7, 8 | lspss 13955 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑇 ∪ 𝑈) ⊆ 𝑉 ∧ 𝑈 ⊆ (𝑇 ∪ 𝑈)) → (𝑁‘𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
| 14 | 1, 4, 12, 13 | syl3anc 1249 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
| 15 | 10, 14 | unssd 3339 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → ((𝑁‘𝑇) ∪ (𝑁‘𝑈)) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
| 16 | 7, 8 | lspssv 13954 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑇 ∪ 𝑈) ⊆ 𝑉) → (𝑁‘(𝑇 ∪ 𝑈)) ⊆ 𝑉) |
| 17 | 1, 4, 16 | syl2anc 411 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘(𝑇 ∪ 𝑈)) ⊆ 𝑉) |
| 18 | 15, 17 | sstrd 3193 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → ((𝑁‘𝑇) ∪ (𝑁‘𝑈)) ⊆ 𝑉) |
| 19 | 7, 8 | lspssid 13956 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉) → 𝑇 ⊆ (𝑁‘𝑇)) |
| 20 | 1, 2, 19 | syl2anc 411 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → 𝑇 ⊆ (𝑁‘𝑇)) |
| 21 | 7, 8 | lspssid 13956 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ (𝑁‘𝑈)) |
| 22 | unss12 3335 | . . . 4 ⊢ ((𝑇 ⊆ (𝑁‘𝑇) ∧ 𝑈 ⊆ (𝑁‘𝑈)) → (𝑇 ∪ 𝑈) ⊆ ((𝑁‘𝑇) ∪ (𝑁‘𝑈))) | |
| 23 | 20, 21, 22 | 3imp3i2an 1185 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑇 ∪ 𝑈) ⊆ ((𝑁‘𝑇) ∪ (𝑁‘𝑈))) |
| 24 | 7, 8 | lspss 13955 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ ((𝑁‘𝑇) ∪ (𝑁‘𝑈)) ⊆ 𝑉 ∧ (𝑇 ∪ 𝑈) ⊆ ((𝑁‘𝑇) ∪ (𝑁‘𝑈))) → (𝑁‘(𝑇 ∪ 𝑈)) ⊆ (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈)))) |
| 25 | 1, 18, 23, 24 | syl3anc 1249 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘(𝑇 ∪ 𝑈)) ⊆ (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈)))) |
| 26 | 7, 8 | lspss 13955 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘(𝑇 ∪ 𝑈)) ⊆ 𝑉 ∧ ((𝑁‘𝑇) ∪ (𝑁‘𝑈)) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) → (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈))) ⊆ (𝑁‘(𝑁‘(𝑇 ∪ 𝑈)))) |
| 27 | 1, 17, 15, 26 | syl3anc 1249 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈))) ⊆ (𝑁‘(𝑁‘(𝑇 ∪ 𝑈)))) |
| 28 | 7, 8 | lspidm 13957 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑇 ∪ 𝑈) ⊆ 𝑉) → (𝑁‘(𝑁‘(𝑇 ∪ 𝑈))) = (𝑁‘(𝑇 ∪ 𝑈))) |
| 29 | 1, 4, 28 | syl2anc 411 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘(𝑁‘(𝑇 ∪ 𝑈))) = (𝑁‘(𝑇 ∪ 𝑈))) |
| 30 | 27, 29 | sseqtrd 3221 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈))) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
| 31 | 25, 30 | eqssd 3200 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘(𝑇 ∪ 𝑈)) = (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ∪ cun 3155 ⊆ wss 3157 ‘cfv 5258 Basecbs 12678 LModclmod 13843 LSpanclspn 13942 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-plusg 12768 df-mulr 12769 df-sca 12771 df-vsca 12772 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 df-sbg 13137 df-mgp 13477 df-ur 13516 df-ring 13554 df-lmod 13845 df-lssm 13909 df-lsp 13943 |
| This theorem is referenced by: lspun0 13981 |
| Copyright terms: Public domain | W3C validator |