![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lspun | GIF version |
Description: The span of union is the span of the union of spans. (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lspss.v | ⊢ 𝑉 = (Base‘𝑊) |
lspss.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lspun | ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘(𝑇 ∪ 𝑈)) = (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 999 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → 𝑊 ∈ LMod) | |
2 | simp2 1000 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → 𝑇 ⊆ 𝑉) | |
3 | simp3 1001 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ 𝑉) | |
4 | 2, 3 | unssd 3326 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑇 ∪ 𝑈) ⊆ 𝑉) |
5 | ssun1 3313 | . . . . . . 7 ⊢ 𝑇 ⊆ (𝑇 ∪ 𝑈) | |
6 | 5 | a1i 9 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → 𝑇 ⊆ (𝑇 ∪ 𝑈)) |
7 | lspss.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
8 | lspss.n | . . . . . . 7 ⊢ 𝑁 = (LSpan‘𝑊) | |
9 | 7, 8 | lspss 13712 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑇 ∪ 𝑈) ⊆ 𝑉 ∧ 𝑇 ⊆ (𝑇 ∪ 𝑈)) → (𝑁‘𝑇) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
10 | 1, 4, 6, 9 | syl3anc 1249 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑇) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
11 | ssun2 3314 | . . . . . . 7 ⊢ 𝑈 ⊆ (𝑇 ∪ 𝑈) | |
12 | 11 | a1i 9 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ (𝑇 ∪ 𝑈)) |
13 | 7, 8 | lspss 13712 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑇 ∪ 𝑈) ⊆ 𝑉 ∧ 𝑈 ⊆ (𝑇 ∪ 𝑈)) → (𝑁‘𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
14 | 1, 4, 12, 13 | syl3anc 1249 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
15 | 10, 14 | unssd 3326 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → ((𝑁‘𝑇) ∪ (𝑁‘𝑈)) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
16 | 7, 8 | lspssv 13711 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑇 ∪ 𝑈) ⊆ 𝑉) → (𝑁‘(𝑇 ∪ 𝑈)) ⊆ 𝑉) |
17 | 1, 4, 16 | syl2anc 411 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘(𝑇 ∪ 𝑈)) ⊆ 𝑉) |
18 | 15, 17 | sstrd 3180 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → ((𝑁‘𝑇) ∪ (𝑁‘𝑈)) ⊆ 𝑉) |
19 | 7, 8 | lspssid 13713 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉) → 𝑇 ⊆ (𝑁‘𝑇)) |
20 | 1, 2, 19 | syl2anc 411 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → 𝑇 ⊆ (𝑁‘𝑇)) |
21 | 7, 8 | lspssid 13713 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ (𝑁‘𝑈)) |
22 | unss12 3322 | . . . 4 ⊢ ((𝑇 ⊆ (𝑁‘𝑇) ∧ 𝑈 ⊆ (𝑁‘𝑈)) → (𝑇 ∪ 𝑈) ⊆ ((𝑁‘𝑇) ∪ (𝑁‘𝑈))) | |
23 | 20, 21, 22 | 3imp3i2an 1185 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑇 ∪ 𝑈) ⊆ ((𝑁‘𝑇) ∪ (𝑁‘𝑈))) |
24 | 7, 8 | lspss 13712 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ ((𝑁‘𝑇) ∪ (𝑁‘𝑈)) ⊆ 𝑉 ∧ (𝑇 ∪ 𝑈) ⊆ ((𝑁‘𝑇) ∪ (𝑁‘𝑈))) → (𝑁‘(𝑇 ∪ 𝑈)) ⊆ (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈)))) |
25 | 1, 18, 23, 24 | syl3anc 1249 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘(𝑇 ∪ 𝑈)) ⊆ (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈)))) |
26 | 7, 8 | lspss 13712 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘(𝑇 ∪ 𝑈)) ⊆ 𝑉 ∧ ((𝑁‘𝑇) ∪ (𝑁‘𝑈)) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) → (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈))) ⊆ (𝑁‘(𝑁‘(𝑇 ∪ 𝑈)))) |
27 | 1, 17, 15, 26 | syl3anc 1249 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈))) ⊆ (𝑁‘(𝑁‘(𝑇 ∪ 𝑈)))) |
28 | 7, 8 | lspidm 13714 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑇 ∪ 𝑈) ⊆ 𝑉) → (𝑁‘(𝑁‘(𝑇 ∪ 𝑈))) = (𝑁‘(𝑇 ∪ 𝑈))) |
29 | 1, 4, 28 | syl2anc 411 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘(𝑁‘(𝑇 ∪ 𝑈))) = (𝑁‘(𝑇 ∪ 𝑈))) |
30 | 27, 29 | sseqtrd 3208 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈))) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
31 | 25, 30 | eqssd 3187 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘(𝑇 ∪ 𝑈)) = (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 ∪ cun 3142 ⊆ wss 3144 ‘cfv 5235 Basecbs 12511 LModclmod 13600 LSpanclspn 13699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7931 ax-resscn 7932 ax-1cn 7933 ax-1re 7934 ax-icn 7935 ax-addcl 7936 ax-addrcl 7937 ax-mulcl 7938 ax-addcom 7940 ax-addass 7942 ax-i2m1 7945 ax-0lt1 7946 ax-0id 7948 ax-rnegex 7949 ax-pre-ltirr 7952 ax-pre-ltadd 7956 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-riota 5851 df-ov 5898 df-oprab 5899 df-mpo 5900 df-1st 6164 df-2nd 6165 df-pnf 8023 df-mnf 8024 df-ltxr 8026 df-inn 8949 df-2 9007 df-3 9008 df-4 9009 df-5 9010 df-6 9011 df-ndx 12514 df-slot 12515 df-base 12517 df-sets 12518 df-plusg 12599 df-mulr 12600 df-sca 12602 df-vsca 12603 df-0g 12760 df-mgm 12829 df-sgrp 12862 df-mnd 12875 df-grp 12945 df-minusg 12946 df-sbg 12947 df-mgp 13272 df-ur 13311 df-ring 13349 df-lmod 13602 df-lssm 13666 df-lsp 13700 |
This theorem is referenced by: lspun0 13738 |
Copyright terms: Public domain | W3C validator |