ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3impexpbicom GIF version

Theorem 3impexpbicom 1426
Description: 3impexp 1425 with biconditional consequent of antecedent that is commuted in consequent. (Contributed by Alan Sare, 31-Dec-2011.)
Assertion
Ref Expression
3impexpbicom (((𝜑𝜓𝜒) → (𝜃𝜏)) ↔ (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃)))))

Proof of Theorem 3impexpbicom
StepHypRef Expression
1 bicom 139 . . . 4 ((𝜃𝜏) ↔ (𝜏𝜃))
2 imbi2 236 . . . . 5 (((𝜃𝜏) ↔ (𝜏𝜃)) → (((𝜑𝜓𝜒) → (𝜃𝜏)) ↔ ((𝜑𝜓𝜒) → (𝜏𝜃))))
32biimpcd 158 . . . 4 (((𝜑𝜓𝜒) → (𝜃𝜏)) → (((𝜃𝜏) ↔ (𝜏𝜃)) → ((𝜑𝜓𝜒) → (𝜏𝜃))))
41, 3mpi 15 . . 3 (((𝜑𝜓𝜒) → (𝜃𝜏)) → ((𝜑𝜓𝜒) → (𝜏𝜃)))
543expd 1214 . 2 (((𝜑𝜓𝜒) → (𝜃𝜏)) → (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃)))))
6 3impexp 1425 . . . 4 (((𝜑𝜓𝜒) → (𝜏𝜃)) ↔ (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃)))))
76biimpri 132 . . 3 ((𝜑 → (𝜓 → (𝜒 → (𝜏𝜃)))) → ((𝜑𝜓𝜒) → (𝜏𝜃)))
87, 1syl6ibr 161 . 2 ((𝜑 → (𝜓 → (𝜒 → (𝜏𝜃)))) → ((𝜑𝜓𝜒) → (𝜃𝜏)))
95, 8impbii 125 1 (((𝜑𝜓𝜒) → (𝜃𝜏)) ↔ (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator