ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancomsimp GIF version

Theorem ancomsimp 1428
Description: Closed form of ancoms 266. (Contributed by Alan Sare, 31-Dec-2011.)
Assertion
Ref Expression
ancomsimp (((𝜑𝜓) → 𝜒) ↔ ((𝜓𝜑) → 𝜒))

Proof of Theorem ancomsimp
StepHypRef Expression
1 ancom 264 . 2 ((𝜑𝜓) ↔ (𝜓𝜑))
21imbi1i 237 1 (((𝜑𝜓) → 𝜒) ↔ ((𝜓𝜑) → 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  ralcomf  2627
  Copyright terms: Public domain W3C validator