ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidontriimlem3 GIF version

Theorem exmidontriimlem3 7141
Description: Lemma for exmidontriim 7143. What we get to do based on induction on both 𝐴 and 𝐵. (Contributed by Jim Kingdon, 10-Aug-2024.)
Hypotheses
Ref Expression
exmidontriimlem3.a (𝜑𝐴 ∈ On)
exmidontriimlem3.b (𝜑𝐵 ∈ On)
exmidontriimlem3.em (𝜑EXMID)
exmidontriimlem3.ha (𝜑 → ∀𝑧𝐴𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))
exmidontriimlem3.hb (𝜑 → ∀𝑦𝐵 (𝐴𝑦𝐴 = 𝑦𝑦𝐴))
Assertion
Ref Expression
exmidontriimlem3 (𝜑 → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐵(𝑧)

Proof of Theorem exmidontriimlem3
Dummy variables 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3mix1 1151 . . 3 (𝐴𝐵 → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
21adantl 275 . 2 ((𝜑𝐴𝐵) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
3 3mix3 1153 . . . 4 (𝐵𝐴 → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
43adantl 275 . . 3 (((𝜑 ∧ ∀𝑤𝐵 𝑤𝐴) ∧ 𝐵𝐴) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
5 simpr 109 . . . . . 6 (((𝜑 ∧ ∀𝑤𝐵 𝑤𝐴) ∧ ∀𝑢𝐴 𝑢𝐵) → ∀𝑢𝐴 𝑢𝐵)
6 dfss3 3118 . . . . . 6 (𝐴𝐵 ↔ ∀𝑢𝐴 𝑢𝐵)
75, 6sylibr 133 . . . . 5 (((𝜑 ∧ ∀𝑤𝐵 𝑤𝐴) ∧ ∀𝑢𝐴 𝑢𝐵) → 𝐴𝐵)
8 simplr 520 . . . . . 6 (((𝜑 ∧ ∀𝑤𝐵 𝑤𝐴) ∧ ∀𝑢𝐴 𝑢𝐵) → ∀𝑤𝐵 𝑤𝐴)
9 dfss3 3118 . . . . . 6 (𝐵𝐴 ↔ ∀𝑤𝐵 𝑤𝐴)
108, 9sylibr 133 . . . . 5 (((𝜑 ∧ ∀𝑤𝐵 𝑤𝐴) ∧ ∀𝑢𝐴 𝑢𝐵) → 𝐵𝐴)
117, 10eqssd 3145 . . . 4 (((𝜑 ∧ ∀𝑤𝐵 𝑤𝐴) ∧ ∀𝑢𝐴 𝑢𝐵) → 𝐴 = 𝐵)
12113mix2d 1158 . . 3 (((𝜑 ∧ ∀𝑤𝐵 𝑤𝐴) ∧ ∀𝑢𝐴 𝑢𝐵) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
13 exmidontriimlem3.a . . . . 5 (𝜑𝐴 ∈ On)
14 exmidontriimlem3.em . . . . 5 (𝜑EXMID)
15 exmidontriimlem3.b . . . . . . 7 (𝜑𝐵 ∈ On)
16 exmidontriimlem3.ha . . . . . . . 8 (𝜑 → ∀𝑧𝐴𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))
17 eleq1 2220 . . . . . . . . . . 11 (𝑧 = 𝑢 → (𝑧𝑦𝑢𝑦))
18 equequ1 1692 . . . . . . . . . . 11 (𝑧 = 𝑢 → (𝑧 = 𝑦𝑢 = 𝑦))
19 eleq2 2221 . . . . . . . . . . 11 (𝑧 = 𝑢 → (𝑦𝑧𝑦𝑢))
2017, 18, 193orbi123d 1293 . . . . . . . . . 10 (𝑧 = 𝑢 → ((𝑧𝑦𝑧 = 𝑦𝑦𝑧) ↔ (𝑢𝑦𝑢 = 𝑦𝑦𝑢)))
2120ralbidv 2457 . . . . . . . . 9 (𝑧 = 𝑢 → (∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧) ↔ ∀𝑦 ∈ On (𝑢𝑦𝑢 = 𝑦𝑦𝑢)))
2221cbvralv 2680 . . . . . . . 8 (∀𝑧𝐴𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧) ↔ ∀𝑢𝐴𝑦 ∈ On (𝑢𝑦𝑢 = 𝑦𝑦𝑢))
2316, 22sylib 121 . . . . . . 7 (𝜑 → ∀𝑢𝐴𝑦 ∈ On (𝑢𝑦𝑢 = 𝑦𝑦𝑢))
24 eleq2 2221 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑢𝑦𝑢𝐵))
25 eqeq2 2167 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑢 = 𝑦𝑢 = 𝐵))
26 eleq1 2220 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑦𝑢𝐵𝑢))
2724, 25, 263orbi123d 1293 . . . . . . . . 9 (𝑦 = 𝐵 → ((𝑢𝑦𝑢 = 𝑦𝑦𝑢) ↔ (𝑢𝐵𝑢 = 𝐵𝐵𝑢)))
2827rspcv 2812 . . . . . . . 8 (𝐵 ∈ On → (∀𝑦 ∈ On (𝑢𝑦𝑢 = 𝑦𝑦𝑢) → (𝑢𝐵𝑢 = 𝐵𝐵𝑢)))
2928ralimdv 2525 . . . . . . 7 (𝐵 ∈ On → (∀𝑢𝐴𝑦 ∈ On (𝑢𝑦𝑢 = 𝑦𝑦𝑢) → ∀𝑢𝐴 (𝑢𝐵𝑢 = 𝐵𝐵𝑢)))
3015, 23, 29sylc 62 . . . . . 6 (𝜑 → ∀𝑢𝐴 (𝑢𝐵𝑢 = 𝐵𝐵𝑢))
31 biid 170 . . . . . . . . 9 (𝑢𝐵𝑢𝐵)
32 eqcom 2159 . . . . . . . . 9 (𝑢 = 𝐵𝐵 = 𝑢)
33 biid 170 . . . . . . . . 9 (𝐵𝑢𝐵𝑢)
3431, 32, 333orbi123i 1172 . . . . . . . 8 ((𝑢𝐵𝑢 = 𝐵𝐵𝑢) ↔ (𝑢𝐵𝐵 = 𝑢𝐵𝑢))
35 3orcomb 972 . . . . . . . 8 ((𝑢𝐵𝐵 = 𝑢𝐵𝑢) ↔ (𝑢𝐵𝐵𝑢𝐵 = 𝑢))
36 3orrot 969 . . . . . . . 8 ((𝑢𝐵𝐵𝑢𝐵 = 𝑢) ↔ (𝐵𝑢𝐵 = 𝑢𝑢𝐵))
3734, 35, 363bitri 205 . . . . . . 7 ((𝑢𝐵𝑢 = 𝐵𝐵𝑢) ↔ (𝐵𝑢𝐵 = 𝑢𝑢𝐵))
3837ralbii 2463 . . . . . 6 (∀𝑢𝐴 (𝑢𝐵𝑢 = 𝐵𝐵𝑢) ↔ ∀𝑢𝐴 (𝐵𝑢𝐵 = 𝑢𝑢𝐵))
3930, 38sylib 121 . . . . 5 (𝜑 → ∀𝑢𝐴 (𝐵𝑢𝐵 = 𝑢𝑢𝐵))
4013, 14, 39exmidontriimlem2 7140 . . . 4 (𝜑 → (𝐵𝐴 ∨ ∀𝑢𝐴 𝑢𝐵))
4140adantr 274 . . 3 ((𝜑 ∧ ∀𝑤𝐵 𝑤𝐴) → (𝐵𝐴 ∨ ∀𝑢𝐴 𝑢𝐵))
424, 12, 41mpjaodan 788 . 2 ((𝜑 ∧ ∀𝑤𝐵 𝑤𝐴) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
43 exmidontriimlem3.hb . . . 4 (𝜑 → ∀𝑦𝐵 (𝐴𝑦𝐴 = 𝑦𝑦𝐴))
44 eleq2 2221 . . . . . 6 (𝑦 = 𝑤 → (𝐴𝑦𝐴𝑤))
45 eqeq2 2167 . . . . . 6 (𝑦 = 𝑤 → (𝐴 = 𝑦𝐴 = 𝑤))
46 eleq1 2220 . . . . . 6 (𝑦 = 𝑤 → (𝑦𝐴𝑤𝐴))
4744, 45, 463orbi123d 1293 . . . . 5 (𝑦 = 𝑤 → ((𝐴𝑦𝐴 = 𝑦𝑦𝐴) ↔ (𝐴𝑤𝐴 = 𝑤𝑤𝐴)))
4847cbvralv 2680 . . . 4 (∀𝑦𝐵 (𝐴𝑦𝐴 = 𝑦𝑦𝐴) ↔ ∀𝑤𝐵 (𝐴𝑤𝐴 = 𝑤𝑤𝐴))
4943, 48sylib 121 . . 3 (𝜑 → ∀𝑤𝐵 (𝐴𝑤𝐴 = 𝑤𝑤𝐴))
5015, 14, 49exmidontriimlem2 7140 . 2 (𝜑 → (𝐴𝐵 ∨ ∀𝑤𝐵 𝑤𝐴))
512, 42, 50mpjaodan 788 1 (𝜑 → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698  w3o 962   = wceq 1335  wcel 2128  wral 2435  wss 3102  EXMIDwem 4154  Oncon0 4322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-nul 4090  ax-pow 4134
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-dif 3104  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-uni 3773  df-tr 4063  df-exmid 4155  df-iord 4325  df-on 4327
This theorem is referenced by:  exmidontriimlem4  7142
  Copyright terms: Public domain W3C validator