ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidontriimlem3 GIF version

Theorem exmidontriimlem3 7187
Description: Lemma for exmidontriim 7189. What we get to do based on induction on both 𝐴 and 𝐵. (Contributed by Jim Kingdon, 10-Aug-2024.)
Hypotheses
Ref Expression
exmidontriimlem3.a (𝜑𝐴 ∈ On)
exmidontriimlem3.b (𝜑𝐵 ∈ On)
exmidontriimlem3.em (𝜑EXMID)
exmidontriimlem3.ha (𝜑 → ∀𝑧𝐴𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))
exmidontriimlem3.hb (𝜑 → ∀𝑦𝐵 (𝐴𝑦𝐴 = 𝑦𝑦𝐴))
Assertion
Ref Expression
exmidontriimlem3 (𝜑 → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐵(𝑧)

Proof of Theorem exmidontriimlem3
Dummy variables 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3mix1 1161 . . 3 (𝐴𝐵 → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
21adantl 275 . 2 ((𝜑𝐴𝐵) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
3 3mix3 1163 . . . 4 (𝐵𝐴 → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
43adantl 275 . . 3 (((𝜑 ∧ ∀𝑤𝐵 𝑤𝐴) ∧ 𝐵𝐴) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
5 simpr 109 . . . . . 6 (((𝜑 ∧ ∀𝑤𝐵 𝑤𝐴) ∧ ∀𝑢𝐴 𝑢𝐵) → ∀𝑢𝐴 𝑢𝐵)
6 dfss3 3137 . . . . . 6 (𝐴𝐵 ↔ ∀𝑢𝐴 𝑢𝐵)
75, 6sylibr 133 . . . . 5 (((𝜑 ∧ ∀𝑤𝐵 𝑤𝐴) ∧ ∀𝑢𝐴 𝑢𝐵) → 𝐴𝐵)
8 simplr 525 . . . . . 6 (((𝜑 ∧ ∀𝑤𝐵 𝑤𝐴) ∧ ∀𝑢𝐴 𝑢𝐵) → ∀𝑤𝐵 𝑤𝐴)
9 dfss3 3137 . . . . . 6 (𝐵𝐴 ↔ ∀𝑤𝐵 𝑤𝐴)
108, 9sylibr 133 . . . . 5 (((𝜑 ∧ ∀𝑤𝐵 𝑤𝐴) ∧ ∀𝑢𝐴 𝑢𝐵) → 𝐵𝐴)
117, 10eqssd 3164 . . . 4 (((𝜑 ∧ ∀𝑤𝐵 𝑤𝐴) ∧ ∀𝑢𝐴 𝑢𝐵) → 𝐴 = 𝐵)
12113mix2d 1168 . . 3 (((𝜑 ∧ ∀𝑤𝐵 𝑤𝐴) ∧ ∀𝑢𝐴 𝑢𝐵) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
13 exmidontriimlem3.a . . . . 5 (𝜑𝐴 ∈ On)
14 exmidontriimlem3.em . . . . 5 (𝜑EXMID)
15 exmidontriimlem3.b . . . . . . 7 (𝜑𝐵 ∈ On)
16 exmidontriimlem3.ha . . . . . . . 8 (𝜑 → ∀𝑧𝐴𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧))
17 eleq1 2233 . . . . . . . . . . 11 (𝑧 = 𝑢 → (𝑧𝑦𝑢𝑦))
18 equequ1 1705 . . . . . . . . . . 11 (𝑧 = 𝑢 → (𝑧 = 𝑦𝑢 = 𝑦))
19 eleq2 2234 . . . . . . . . . . 11 (𝑧 = 𝑢 → (𝑦𝑧𝑦𝑢))
2017, 18, 193orbi123d 1306 . . . . . . . . . 10 (𝑧 = 𝑢 → ((𝑧𝑦𝑧 = 𝑦𝑦𝑧) ↔ (𝑢𝑦𝑢 = 𝑦𝑦𝑢)))
2120ralbidv 2470 . . . . . . . . 9 (𝑧 = 𝑢 → (∀𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧) ↔ ∀𝑦 ∈ On (𝑢𝑦𝑢 = 𝑦𝑦𝑢)))
2221cbvralv 2696 . . . . . . . 8 (∀𝑧𝐴𝑦 ∈ On (𝑧𝑦𝑧 = 𝑦𝑦𝑧) ↔ ∀𝑢𝐴𝑦 ∈ On (𝑢𝑦𝑢 = 𝑦𝑦𝑢))
2316, 22sylib 121 . . . . . . 7 (𝜑 → ∀𝑢𝐴𝑦 ∈ On (𝑢𝑦𝑢 = 𝑦𝑦𝑢))
24 eleq2 2234 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑢𝑦𝑢𝐵))
25 eqeq2 2180 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑢 = 𝑦𝑢 = 𝐵))
26 eleq1 2233 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑦𝑢𝐵𝑢))
2724, 25, 263orbi123d 1306 . . . . . . . . 9 (𝑦 = 𝐵 → ((𝑢𝑦𝑢 = 𝑦𝑦𝑢) ↔ (𝑢𝐵𝑢 = 𝐵𝐵𝑢)))
2827rspcv 2830 . . . . . . . 8 (𝐵 ∈ On → (∀𝑦 ∈ On (𝑢𝑦𝑢 = 𝑦𝑦𝑢) → (𝑢𝐵𝑢 = 𝐵𝐵𝑢)))
2928ralimdv 2538 . . . . . . 7 (𝐵 ∈ On → (∀𝑢𝐴𝑦 ∈ On (𝑢𝑦𝑢 = 𝑦𝑦𝑢) → ∀𝑢𝐴 (𝑢𝐵𝑢 = 𝐵𝐵𝑢)))
3015, 23, 29sylc 62 . . . . . 6 (𝜑 → ∀𝑢𝐴 (𝑢𝐵𝑢 = 𝐵𝐵𝑢))
31 biid 170 . . . . . . . . 9 (𝑢𝐵𝑢𝐵)
32 eqcom 2172 . . . . . . . . 9 (𝑢 = 𝐵𝐵 = 𝑢)
33 biid 170 . . . . . . . . 9 (𝐵𝑢𝐵𝑢)
3431, 32, 333orbi123i 1184 . . . . . . . 8 ((𝑢𝐵𝑢 = 𝐵𝐵𝑢) ↔ (𝑢𝐵𝐵 = 𝑢𝐵𝑢))
35 3orcomb 982 . . . . . . . 8 ((𝑢𝐵𝐵 = 𝑢𝐵𝑢) ↔ (𝑢𝐵𝐵𝑢𝐵 = 𝑢))
36 3orrot 979 . . . . . . . 8 ((𝑢𝐵𝐵𝑢𝐵 = 𝑢) ↔ (𝐵𝑢𝐵 = 𝑢𝑢𝐵))
3734, 35, 363bitri 205 . . . . . . 7 ((𝑢𝐵𝑢 = 𝐵𝐵𝑢) ↔ (𝐵𝑢𝐵 = 𝑢𝑢𝐵))
3837ralbii 2476 . . . . . 6 (∀𝑢𝐴 (𝑢𝐵𝑢 = 𝐵𝐵𝑢) ↔ ∀𝑢𝐴 (𝐵𝑢𝐵 = 𝑢𝑢𝐵))
3930, 38sylib 121 . . . . 5 (𝜑 → ∀𝑢𝐴 (𝐵𝑢𝐵 = 𝑢𝑢𝐵))
4013, 14, 39exmidontriimlem2 7186 . . . 4 (𝜑 → (𝐵𝐴 ∨ ∀𝑢𝐴 𝑢𝐵))
4140adantr 274 . . 3 ((𝜑 ∧ ∀𝑤𝐵 𝑤𝐴) → (𝐵𝐴 ∨ ∀𝑢𝐴 𝑢𝐵))
424, 12, 41mpjaodan 793 . 2 ((𝜑 ∧ ∀𝑤𝐵 𝑤𝐴) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
43 exmidontriimlem3.hb . . . 4 (𝜑 → ∀𝑦𝐵 (𝐴𝑦𝐴 = 𝑦𝑦𝐴))
44 eleq2 2234 . . . . . 6 (𝑦 = 𝑤 → (𝐴𝑦𝐴𝑤))
45 eqeq2 2180 . . . . . 6 (𝑦 = 𝑤 → (𝐴 = 𝑦𝐴 = 𝑤))
46 eleq1 2233 . . . . . 6 (𝑦 = 𝑤 → (𝑦𝐴𝑤𝐴))
4744, 45, 463orbi123d 1306 . . . . 5 (𝑦 = 𝑤 → ((𝐴𝑦𝐴 = 𝑦𝑦𝐴) ↔ (𝐴𝑤𝐴 = 𝑤𝑤𝐴)))
4847cbvralv 2696 . . . 4 (∀𝑦𝐵 (𝐴𝑦𝐴 = 𝑦𝑦𝐴) ↔ ∀𝑤𝐵 (𝐴𝑤𝐴 = 𝑤𝑤𝐴))
4943, 48sylib 121 . . 3 (𝜑 → ∀𝑤𝐵 (𝐴𝑤𝐴 = 𝑤𝑤𝐴))
5015, 14, 49exmidontriimlem2 7186 . 2 (𝜑 → (𝐴𝐵 ∨ ∀𝑤𝐵 𝑤𝐴))
512, 42, 50mpjaodan 793 1 (𝜑 → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 703  w3o 972   = wceq 1348  wcel 2141  wral 2448  wss 3121  EXMIDwem 4178  Oncon0 4346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-nul 4113  ax-pow 4158
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-uni 3795  df-tr 4086  df-exmid 4179  df-iord 4349  df-on 4351
This theorem is referenced by:  exmidontriimlem4  7188
  Copyright terms: Public domain W3C validator