| Step | Hyp | Ref
| Expression |
| 1 | | 3mix1 1168 |
. . 3
⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) |
| 2 | 1 | adantl 277 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) |
| 3 | | 3mix3 1170 |
. . . 4
⊢ (𝐵 ∈ 𝐴 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) |
| 4 | 3 | adantl 277 |
. . 3
⊢ (((𝜑 ∧ ∀𝑤 ∈ 𝐵 𝑤 ∈ 𝐴) ∧ 𝐵 ∈ 𝐴) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) |
| 5 | | simpr 110 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑤 ∈ 𝐵 𝑤 ∈ 𝐴) ∧ ∀𝑢 ∈ 𝐴 𝑢 ∈ 𝐵) → ∀𝑢 ∈ 𝐴 𝑢 ∈ 𝐵) |
| 6 | | dfss3 3173 |
. . . . . 6
⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑢 ∈ 𝐴 𝑢 ∈ 𝐵) |
| 7 | 5, 6 | sylibr 134 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑤 ∈ 𝐵 𝑤 ∈ 𝐴) ∧ ∀𝑢 ∈ 𝐴 𝑢 ∈ 𝐵) → 𝐴 ⊆ 𝐵) |
| 8 | | simplr 528 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑤 ∈ 𝐵 𝑤 ∈ 𝐴) ∧ ∀𝑢 ∈ 𝐴 𝑢 ∈ 𝐵) → ∀𝑤 ∈ 𝐵 𝑤 ∈ 𝐴) |
| 9 | | dfss3 3173 |
. . . . . 6
⊢ (𝐵 ⊆ 𝐴 ↔ ∀𝑤 ∈ 𝐵 𝑤 ∈ 𝐴) |
| 10 | 8, 9 | sylibr 134 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑤 ∈ 𝐵 𝑤 ∈ 𝐴) ∧ ∀𝑢 ∈ 𝐴 𝑢 ∈ 𝐵) → 𝐵 ⊆ 𝐴) |
| 11 | 7, 10 | eqssd 3200 |
. . . 4
⊢ (((𝜑 ∧ ∀𝑤 ∈ 𝐵 𝑤 ∈ 𝐴) ∧ ∀𝑢 ∈ 𝐴 𝑢 ∈ 𝐵) → 𝐴 = 𝐵) |
| 12 | 11 | 3mix2d 1175 |
. . 3
⊢ (((𝜑 ∧ ∀𝑤 ∈ 𝐵 𝑤 ∈ 𝐴) ∧ ∀𝑢 ∈ 𝐴 𝑢 ∈ 𝐵) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) |
| 13 | | exmidontriimlem3.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ On) |
| 14 | | exmidontriimlem3.em |
. . . . 5
⊢ (𝜑 →
EXMID) |
| 15 | | exmidontriimlem3.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ On) |
| 16 | | exmidontriimlem3.ha |
. . . . . . . 8
⊢ (𝜑 → ∀𝑧 ∈ 𝐴 ∀𝑦 ∈ On (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧)) |
| 17 | | eleq1 2259 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑢 → (𝑧 ∈ 𝑦 ↔ 𝑢 ∈ 𝑦)) |
| 18 | | equequ1 1726 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑢 → (𝑧 = 𝑦 ↔ 𝑢 = 𝑦)) |
| 19 | | eleq2 2260 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑢 → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑢)) |
| 20 | 17, 18, 19 | 3orbi123d 1322 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑢 → ((𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧) ↔ (𝑢 ∈ 𝑦 ∨ 𝑢 = 𝑦 ∨ 𝑦 ∈ 𝑢))) |
| 21 | 20 | ralbidv 2497 |
. . . . . . . . 9
⊢ (𝑧 = 𝑢 → (∀𝑦 ∈ On (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧) ↔ ∀𝑦 ∈ On (𝑢 ∈ 𝑦 ∨ 𝑢 = 𝑦 ∨ 𝑦 ∈ 𝑢))) |
| 22 | 21 | cbvralv 2729 |
. . . . . . . 8
⊢
(∀𝑧 ∈
𝐴 ∀𝑦 ∈ On (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧) ↔ ∀𝑢 ∈ 𝐴 ∀𝑦 ∈ On (𝑢 ∈ 𝑦 ∨ 𝑢 = 𝑦 ∨ 𝑦 ∈ 𝑢)) |
| 23 | 16, 22 | sylib 122 |
. . . . . . 7
⊢ (𝜑 → ∀𝑢 ∈ 𝐴 ∀𝑦 ∈ On (𝑢 ∈ 𝑦 ∨ 𝑢 = 𝑦 ∨ 𝑦 ∈ 𝑢)) |
| 24 | | eleq2 2260 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐵 → (𝑢 ∈ 𝑦 ↔ 𝑢 ∈ 𝐵)) |
| 25 | | eqeq2 2206 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐵 → (𝑢 = 𝑦 ↔ 𝑢 = 𝐵)) |
| 26 | | eleq1 2259 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝑢 ↔ 𝐵 ∈ 𝑢)) |
| 27 | 24, 25, 26 | 3orbi123d 1322 |
. . . . . . . . 9
⊢ (𝑦 = 𝐵 → ((𝑢 ∈ 𝑦 ∨ 𝑢 = 𝑦 ∨ 𝑦 ∈ 𝑢) ↔ (𝑢 ∈ 𝐵 ∨ 𝑢 = 𝐵 ∨ 𝐵 ∈ 𝑢))) |
| 28 | 27 | rspcv 2864 |
. . . . . . . 8
⊢ (𝐵 ∈ On → (∀𝑦 ∈ On (𝑢 ∈ 𝑦 ∨ 𝑢 = 𝑦 ∨ 𝑦 ∈ 𝑢) → (𝑢 ∈ 𝐵 ∨ 𝑢 = 𝐵 ∨ 𝐵 ∈ 𝑢))) |
| 29 | 28 | ralimdv 2565 |
. . . . . . 7
⊢ (𝐵 ∈ On → (∀𝑢 ∈ 𝐴 ∀𝑦 ∈ On (𝑢 ∈ 𝑦 ∨ 𝑢 = 𝑦 ∨ 𝑦 ∈ 𝑢) → ∀𝑢 ∈ 𝐴 (𝑢 ∈ 𝐵 ∨ 𝑢 = 𝐵 ∨ 𝐵 ∈ 𝑢))) |
| 30 | 15, 23, 29 | sylc 62 |
. . . . . 6
⊢ (𝜑 → ∀𝑢 ∈ 𝐴 (𝑢 ∈ 𝐵 ∨ 𝑢 = 𝐵 ∨ 𝐵 ∈ 𝑢)) |
| 31 | | biid 171 |
. . . . . . . . 9
⊢ (𝑢 ∈ 𝐵 ↔ 𝑢 ∈ 𝐵) |
| 32 | | eqcom 2198 |
. . . . . . . . 9
⊢ (𝑢 = 𝐵 ↔ 𝐵 = 𝑢) |
| 33 | | biid 171 |
. . . . . . . . 9
⊢ (𝐵 ∈ 𝑢 ↔ 𝐵 ∈ 𝑢) |
| 34 | 31, 32, 33 | 3orbi123i 1191 |
. . . . . . . 8
⊢ ((𝑢 ∈ 𝐵 ∨ 𝑢 = 𝐵 ∨ 𝐵 ∈ 𝑢) ↔ (𝑢 ∈ 𝐵 ∨ 𝐵 = 𝑢 ∨ 𝐵 ∈ 𝑢)) |
| 35 | | 3orcomb 989 |
. . . . . . . 8
⊢ ((𝑢 ∈ 𝐵 ∨ 𝐵 = 𝑢 ∨ 𝐵 ∈ 𝑢) ↔ (𝑢 ∈ 𝐵 ∨ 𝐵 ∈ 𝑢 ∨ 𝐵 = 𝑢)) |
| 36 | | 3orrot 986 |
. . . . . . . 8
⊢ ((𝑢 ∈ 𝐵 ∨ 𝐵 ∈ 𝑢 ∨ 𝐵 = 𝑢) ↔ (𝐵 ∈ 𝑢 ∨ 𝐵 = 𝑢 ∨ 𝑢 ∈ 𝐵)) |
| 37 | 34, 35, 36 | 3bitri 206 |
. . . . . . 7
⊢ ((𝑢 ∈ 𝐵 ∨ 𝑢 = 𝐵 ∨ 𝐵 ∈ 𝑢) ↔ (𝐵 ∈ 𝑢 ∨ 𝐵 = 𝑢 ∨ 𝑢 ∈ 𝐵)) |
| 38 | 37 | ralbii 2503 |
. . . . . 6
⊢
(∀𝑢 ∈
𝐴 (𝑢 ∈ 𝐵 ∨ 𝑢 = 𝐵 ∨ 𝐵 ∈ 𝑢) ↔ ∀𝑢 ∈ 𝐴 (𝐵 ∈ 𝑢 ∨ 𝐵 = 𝑢 ∨ 𝑢 ∈ 𝐵)) |
| 39 | 30, 38 | sylib 122 |
. . . . 5
⊢ (𝜑 → ∀𝑢 ∈ 𝐴 (𝐵 ∈ 𝑢 ∨ 𝐵 = 𝑢 ∨ 𝑢 ∈ 𝐵)) |
| 40 | 13, 14, 39 | exmidontriimlem2 7289 |
. . . 4
⊢ (𝜑 → (𝐵 ∈ 𝐴 ∨ ∀𝑢 ∈ 𝐴 𝑢 ∈ 𝐵)) |
| 41 | 40 | adantr 276 |
. . 3
⊢ ((𝜑 ∧ ∀𝑤 ∈ 𝐵 𝑤 ∈ 𝐴) → (𝐵 ∈ 𝐴 ∨ ∀𝑢 ∈ 𝐴 𝑢 ∈ 𝐵)) |
| 42 | 4, 12, 41 | mpjaodan 799 |
. 2
⊢ ((𝜑 ∧ ∀𝑤 ∈ 𝐵 𝑤 ∈ 𝐴) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) |
| 43 | | exmidontriimlem3.hb |
. . . 4
⊢ (𝜑 → ∀𝑦 ∈ 𝐵 (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ∨ 𝑦 ∈ 𝐴)) |
| 44 | | eleq2 2260 |
. . . . . 6
⊢ (𝑦 = 𝑤 → (𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑤)) |
| 45 | | eqeq2 2206 |
. . . . . 6
⊢ (𝑦 = 𝑤 → (𝐴 = 𝑦 ↔ 𝐴 = 𝑤)) |
| 46 | | eleq1 2259 |
. . . . . 6
⊢ (𝑦 = 𝑤 → (𝑦 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴)) |
| 47 | 44, 45, 46 | 3orbi123d 1322 |
. . . . 5
⊢ (𝑦 = 𝑤 → ((𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ∨ 𝑦 ∈ 𝐴) ↔ (𝐴 ∈ 𝑤 ∨ 𝐴 = 𝑤 ∨ 𝑤 ∈ 𝐴))) |
| 48 | 47 | cbvralv 2729 |
. . . 4
⊢
(∀𝑦 ∈
𝐵 (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ∨ 𝑦 ∈ 𝐴) ↔ ∀𝑤 ∈ 𝐵 (𝐴 ∈ 𝑤 ∨ 𝐴 = 𝑤 ∨ 𝑤 ∈ 𝐴)) |
| 49 | 43, 48 | sylib 122 |
. . 3
⊢ (𝜑 → ∀𝑤 ∈ 𝐵 (𝐴 ∈ 𝑤 ∨ 𝐴 = 𝑤 ∨ 𝑤 ∈ 𝐴)) |
| 50 | 15, 14, 49 | exmidontriimlem2 7289 |
. 2
⊢ (𝜑 → (𝐴 ∈ 𝐵 ∨ ∀𝑤 ∈ 𝐵 𝑤 ∈ 𝐴)) |
| 51 | 2, 42, 50 | mpjaodan 799 |
1
⊢ (𝜑 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) |