Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trirec0 GIF version

Theorem trirec0 15534
Description: Every real number having a reciprocal or equaling zero is equivalent to real number trichotomy.

This is the key part of the definition of what is known as a discrete field, so "the real numbers are a discrete field" can be taken as an equivalent way to state real trichotomy (see further discussion at trilpo 15533). (Contributed by Jim Kingdon, 10-Jun-2024.)

Assertion
Ref Expression
trirec0 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0))
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem trirec0
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . . . 6 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) ∧ 𝑥 < 0) → 𝑥 ∈ ℝ)
2 simpr 110 . . . . . . 7 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) ∧ 𝑥 < 0) → 𝑥 < 0)
31, 2lt0ap0d 8668 . . . . . 6 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) ∧ 𝑥 < 0) → 𝑥 # 0)
4 rerecclap 8749 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑥 # 0) → (1 / 𝑥) ∈ ℝ)
5 recn 8005 . . . . . . . 8 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
6 recidap 8705 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑥 # 0) → (𝑥 · (1 / 𝑥)) = 1)
75, 6sylan 283 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑥 # 0) → (𝑥 · (1 / 𝑥)) = 1)
8 oveq2 5926 . . . . . . . . 9 (𝑧 = (1 / 𝑥) → (𝑥 · 𝑧) = (𝑥 · (1 / 𝑥)))
98eqeq1d 2202 . . . . . . . 8 (𝑧 = (1 / 𝑥) → ((𝑥 · 𝑧) = 1 ↔ (𝑥 · (1 / 𝑥)) = 1))
109rspcev 2864 . . . . . . 7 (((1 / 𝑥) ∈ ℝ ∧ (𝑥 · (1 / 𝑥)) = 1) → ∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1)
114, 7, 10syl2anc 411 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑥 # 0) → ∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1)
121, 3, 11syl2anc 411 . . . . 5 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) ∧ 𝑥 < 0) → ∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1)
1312orcd 734 . . . 4 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) ∧ 𝑥 < 0) → (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0))
14 simpr 110 . . . . 5 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) ∧ 𝑥 = 0) → 𝑥 = 0)
1514olcd 735 . . . 4 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) ∧ 𝑥 = 0) → (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0))
16 simpll 527 . . . . . 6 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) ∧ 0 < 𝑥) → 𝑥 ∈ ℝ)
17 simpr 110 . . . . . . 7 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) ∧ 0 < 𝑥) → 0 < 𝑥)
1816, 17gt0ap0d 8648 . . . . . 6 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) ∧ 0 < 𝑥) → 𝑥 # 0)
1916, 18, 11syl2anc 411 . . . . 5 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) ∧ 0 < 𝑥) → ∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1)
2019orcd 734 . . . 4 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) ∧ 0 < 𝑥) → (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0))
21 0re 8019 . . . . . 6 0 ∈ ℝ
22 breq2 4033 . . . . . . . 8 (𝑦 = 0 → (𝑥 < 𝑦𝑥 < 0))
23 eqeq2 2203 . . . . . . . 8 (𝑦 = 0 → (𝑥 = 𝑦𝑥 = 0))
24 breq1 4032 . . . . . . . 8 (𝑦 = 0 → (𝑦 < 𝑥 ↔ 0 < 𝑥))
2522, 23, 243orbi123d 1322 . . . . . . 7 (𝑦 = 0 → ((𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ (𝑥 < 0 ∨ 𝑥 = 0 ∨ 0 < 𝑥)))
2625rspcv 2860 . . . . . 6 (0 ∈ ℝ → (∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → (𝑥 < 0 ∨ 𝑥 = 0 ∨ 0 < 𝑥)))
2721, 26ax-mp 5 . . . . 5 (∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → (𝑥 < 0 ∨ 𝑥 = 0 ∨ 0 < 𝑥))
2827adantl 277 . . . 4 ((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) → (𝑥 < 0 ∨ 𝑥 = 0 ∨ 0 < 𝑥))
2913, 15, 20, 28mpjao3dan 1318 . . 3 ((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) → (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0))
3029ralimiaa 2556 . 2 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → ∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0))
31 oveq1 5925 . . . . . . 7 (𝑥 = 𝑤 → (𝑥 · 𝑧) = (𝑤 · 𝑧))
3231eqeq1d 2202 . . . . . 6 (𝑥 = 𝑤 → ((𝑥 · 𝑧) = 1 ↔ (𝑤 · 𝑧) = 1))
3332rexbidv 2495 . . . . 5 (𝑥 = 𝑤 → (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ↔ ∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1))
34 eqeq1 2200 . . . . 5 (𝑥 = 𝑤 → (𝑥 = 0 ↔ 𝑤 = 0))
3533, 34orbi12d 794 . . . 4 (𝑥 = 𝑤 → ((∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0) ↔ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0)))
3635cbvralv 2726 . . 3 (∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0) ↔ ∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0))
37 nfcv 2336 . . . . . . . . 9 𝑧
38 nfre1 2537 . . . . . . . . . 10 𝑧𝑧 ∈ ℝ (𝑤 · 𝑧) = 1
39 nfv 1539 . . . . . . . . . 10 𝑧 𝑤 = 0
4038, 39nfor 1585 . . . . . . . . 9 𝑧(∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0)
4137, 40nfralya 2534 . . . . . . . 8 𝑧𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0)
42 nfv 1539 . . . . . . . 8 𝑧(𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)
4341, 42nfan 1576 . . . . . . 7 𝑧(∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ))
44 nfv 1539 . . . . . . 7 𝑧(𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)
45 simpr 110 . . . . . . . . . . 11 (((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) ∧ (𝑦𝑥) < 0) → (𝑦𝑥) < 0)
46 simprr 531 . . . . . . . . . . . . . 14 ((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ)
4746ad2antrr 488 . . . . . . . . . . . . 13 ((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) → 𝑦 ∈ ℝ)
4847adantr 276 . . . . . . . . . . . 12 (((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) ∧ (𝑦𝑥) < 0) → 𝑦 ∈ ℝ)
49 simprl 529 . . . . . . . . . . . . . 14 ((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ)
5049ad2antrr 488 . . . . . . . . . . . . 13 ((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) → 𝑥 ∈ ℝ)
5150adantr 276 . . . . . . . . . . . 12 (((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) ∧ (𝑦𝑥) < 0) → 𝑥 ∈ ℝ)
5248, 51sublt0d 8589 . . . . . . . . . . 11 (((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) ∧ (𝑦𝑥) < 0) → ((𝑦𝑥) < 0 ↔ 𝑦 < 𝑥))
5345, 52mpbid 147 . . . . . . . . . 10 (((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) ∧ (𝑦𝑥) < 0) → 𝑦 < 𝑥)
54533mix3d 1176 . . . . . . . . 9 (((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) ∧ (𝑦𝑥) < 0) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
55 simpr 110 . . . . . . . . . . 11 (((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) ∧ 0 < (𝑦𝑥)) → 0 < (𝑦𝑥))
5650adantr 276 . . . . . . . . . . . 12 (((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) ∧ 0 < (𝑦𝑥)) → 𝑥 ∈ ℝ)
5747adantr 276 . . . . . . . . . . . 12 (((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) ∧ 0 < (𝑦𝑥)) → 𝑦 ∈ ℝ)
5856, 57posdifd 8551 . . . . . . . . . . 11 (((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) ∧ 0 < (𝑦𝑥)) → (𝑥 < 𝑦 ↔ 0 < (𝑦𝑥)))
5955, 58mpbird 167 . . . . . . . . . 10 (((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) ∧ 0 < (𝑦𝑥)) → 𝑥 < 𝑦)
60593mix1d 1174 . . . . . . . . 9 (((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) ∧ 0 < (𝑦𝑥)) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
6147recnd 8048 . . . . . . . . . . . 12 ((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) → 𝑦 ∈ ℂ)
6250recnd 8048 . . . . . . . . . . . 12 ((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) → 𝑥 ∈ ℂ)
6361, 62subcld 8330 . . . . . . . . . . 11 ((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) → (𝑦𝑥) ∈ ℂ)
64 simplr 528 . . . . . . . . . . . 12 ((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) → 𝑧 ∈ ℝ)
6564recnd 8048 . . . . . . . . . . 11 ((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) → 𝑧 ∈ ℂ)
66 simpr 110 . . . . . . . . . . . 12 ((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) → ((𝑦𝑥) · 𝑧) = 1)
67 1ap0 8609 . . . . . . . . . . . 12 1 # 0
6866, 67eqbrtrdi 4068 . . . . . . . . . . 11 ((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) → ((𝑦𝑥) · 𝑧) # 0)
6963, 65, 68mulap0bad 8678 . . . . . . . . . 10 ((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) → (𝑦𝑥) # 0)
7046, 49resubcld 8400 . . . . . . . . . . . 12 ((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑦𝑥) ∈ ℝ)
7170ad2antrr 488 . . . . . . . . . . 11 ((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) → (𝑦𝑥) ∈ ℝ)
72 reaplt 8607 . . . . . . . . . . 11 (((𝑦𝑥) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑦𝑥) # 0 ↔ ((𝑦𝑥) < 0 ∨ 0 < (𝑦𝑥))))
7371, 21, 72sylancl 413 . . . . . . . . . 10 ((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) → ((𝑦𝑥) # 0 ↔ ((𝑦𝑥) < 0 ∨ 0 < (𝑦𝑥))))
7469, 73mpbid 147 . . . . . . . . 9 ((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) → ((𝑦𝑥) < 0 ∨ 0 < (𝑦𝑥)))
7554, 60, 74mpjaodan 799 . . . . . . . 8 ((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
7675exp31 364 . . . . . . 7 ((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑧 ∈ ℝ → (((𝑦𝑥) · 𝑧) = 1 → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))))
7743, 44, 76rexlimd 2608 . . . . . 6 ((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (∃𝑧 ∈ ℝ ((𝑦𝑥) · 𝑧) = 1 → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)))
7877imp 124 . . . . 5 (((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ ∃𝑧 ∈ ℝ ((𝑦𝑥) · 𝑧) = 1) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
7946recnd 8048 . . . . . . . . 9 ((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℂ)
8079adantr 276 . . . . . . . 8 (((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑦𝑥) = 0) → 𝑦 ∈ ℂ)
8149recnd 8048 . . . . . . . . 9 ((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℂ)
8281adantr 276 . . . . . . . 8 (((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑦𝑥) = 0) → 𝑥 ∈ ℂ)
83 simpr 110 . . . . . . . 8 (((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑦𝑥) = 0) → (𝑦𝑥) = 0)
8480, 82, 83subeq0d 8338 . . . . . . 7 (((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑦𝑥) = 0) → 𝑦 = 𝑥)
8584equcomd 1718 . . . . . 6 (((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑦𝑥) = 0) → 𝑥 = 𝑦)
86853mix2d 1175 . . . . 5 (((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑦𝑥) = 0) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
87 oveq1 5925 . . . . . . . . 9 (𝑤 = (𝑦𝑥) → (𝑤 · 𝑧) = ((𝑦𝑥) · 𝑧))
8887eqeq1d 2202 . . . . . . . 8 (𝑤 = (𝑦𝑥) → ((𝑤 · 𝑧) = 1 ↔ ((𝑦𝑥) · 𝑧) = 1))
8988rexbidv 2495 . . . . . . 7 (𝑤 = (𝑦𝑥) → (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ↔ ∃𝑧 ∈ ℝ ((𝑦𝑥) · 𝑧) = 1))
90 eqeq1 2200 . . . . . . 7 (𝑤 = (𝑦𝑥) → (𝑤 = 0 ↔ (𝑦𝑥) = 0))
9189, 90orbi12d 794 . . . . . 6 (𝑤 = (𝑦𝑥) → ((∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ↔ (∃𝑧 ∈ ℝ ((𝑦𝑥) · 𝑧) = 1 ∨ (𝑦𝑥) = 0)))
92 simpl 109 . . . . . 6 ((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0))
9391, 92, 70rspcdva 2869 . . . . 5 ((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (∃𝑧 ∈ ℝ ((𝑦𝑥) · 𝑧) = 1 ∨ (𝑦𝑥) = 0))
9478, 86, 93mpjaodan 799 . . . 4 ((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
9594ralrimivva 2576 . . 3 (∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
9636, 95sylbi 121 . 2 (∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
9730, 96impbii 126 1 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  w3o 979   = wceq 1364  wcel 2164  wral 2472  wrex 2473   class class class wbr 4029  (class class class)co 5918  cc 7870  cr 7871  0cc0 7872  1c1 7873   · cmul 7877   < clt 8054  cmin 8190   # cap 8600   / cdiv 8691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692
This theorem is referenced by:  trirec0xor  15535
  Copyright terms: Public domain W3C validator