Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trirec0 GIF version

Theorem trirec0 16371
Description: Every real number having a reciprocal or equaling zero is equivalent to real number trichotomy.

This is the key part of the definition of what is known as a discrete field, so "the real numbers are a discrete field" can be taken as an equivalent way to state real trichotomy (see further discussion at trilpo 16370). (Contributed by Jim Kingdon, 10-Jun-2024.)

Assertion
Ref Expression
trirec0 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0))
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem trirec0
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . . . 6 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) ∧ 𝑥 < 0) → 𝑥 ∈ ℝ)
2 simpr 110 . . . . . . 7 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) ∧ 𝑥 < 0) → 𝑥 < 0)
31, 2lt0ap0d 8792 . . . . . 6 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) ∧ 𝑥 < 0) → 𝑥 # 0)
4 rerecclap 8873 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑥 # 0) → (1 / 𝑥) ∈ ℝ)
5 recn 8128 . . . . . . . 8 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
6 recidap 8829 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑥 # 0) → (𝑥 · (1 / 𝑥)) = 1)
75, 6sylan 283 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑥 # 0) → (𝑥 · (1 / 𝑥)) = 1)
8 oveq2 6008 . . . . . . . . 9 (𝑧 = (1 / 𝑥) → (𝑥 · 𝑧) = (𝑥 · (1 / 𝑥)))
98eqeq1d 2238 . . . . . . . 8 (𝑧 = (1 / 𝑥) → ((𝑥 · 𝑧) = 1 ↔ (𝑥 · (1 / 𝑥)) = 1))
109rspcev 2907 . . . . . . 7 (((1 / 𝑥) ∈ ℝ ∧ (𝑥 · (1 / 𝑥)) = 1) → ∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1)
114, 7, 10syl2anc 411 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑥 # 0) → ∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1)
121, 3, 11syl2anc 411 . . . . 5 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) ∧ 𝑥 < 0) → ∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1)
1312orcd 738 . . . 4 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) ∧ 𝑥 < 0) → (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0))
14 simpr 110 . . . . 5 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) ∧ 𝑥 = 0) → 𝑥 = 0)
1514olcd 739 . . . 4 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) ∧ 𝑥 = 0) → (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0))
16 simpll 527 . . . . . 6 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) ∧ 0 < 𝑥) → 𝑥 ∈ ℝ)
17 simpr 110 . . . . . . 7 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) ∧ 0 < 𝑥) → 0 < 𝑥)
1816, 17gt0ap0d 8772 . . . . . 6 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) ∧ 0 < 𝑥) → 𝑥 # 0)
1916, 18, 11syl2anc 411 . . . . 5 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) ∧ 0 < 𝑥) → ∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1)
2019orcd 738 . . . 4 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) ∧ 0 < 𝑥) → (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0))
21 0re 8142 . . . . . 6 0 ∈ ℝ
22 breq2 4086 . . . . . . . 8 (𝑦 = 0 → (𝑥 < 𝑦𝑥 < 0))
23 eqeq2 2239 . . . . . . . 8 (𝑦 = 0 → (𝑥 = 𝑦𝑥 = 0))
24 breq1 4085 . . . . . . . 8 (𝑦 = 0 → (𝑦 < 𝑥 ↔ 0 < 𝑥))
2522, 23, 243orbi123d 1345 . . . . . . 7 (𝑦 = 0 → ((𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ (𝑥 < 0 ∨ 𝑥 = 0 ∨ 0 < 𝑥)))
2625rspcv 2903 . . . . . 6 (0 ∈ ℝ → (∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → (𝑥 < 0 ∨ 𝑥 = 0 ∨ 0 < 𝑥)))
2721, 26ax-mp 5 . . . . 5 (∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → (𝑥 < 0 ∨ 𝑥 = 0 ∨ 0 < 𝑥))
2827adantl 277 . . . 4 ((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) → (𝑥 < 0 ∨ 𝑥 = 0 ∨ 0 < 𝑥))
2913, 15, 20, 28mpjao3dan 1341 . . 3 ((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) → (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0))
3029ralimiaa 2592 . 2 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → ∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0))
31 oveq1 6007 . . . . . . 7 (𝑥 = 𝑤 → (𝑥 · 𝑧) = (𝑤 · 𝑧))
3231eqeq1d 2238 . . . . . 6 (𝑥 = 𝑤 → ((𝑥 · 𝑧) = 1 ↔ (𝑤 · 𝑧) = 1))
3332rexbidv 2531 . . . . 5 (𝑥 = 𝑤 → (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ↔ ∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1))
34 eqeq1 2236 . . . . 5 (𝑥 = 𝑤 → (𝑥 = 0 ↔ 𝑤 = 0))
3533, 34orbi12d 798 . . . 4 (𝑥 = 𝑤 → ((∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0) ↔ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0)))
3635cbvralv 2765 . . 3 (∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0) ↔ ∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0))
37 nfcv 2372 . . . . . . . . 9 𝑧
38 nfre1 2573 . . . . . . . . . 10 𝑧𝑧 ∈ ℝ (𝑤 · 𝑧) = 1
39 nfv 1574 . . . . . . . . . 10 𝑧 𝑤 = 0
4038, 39nfor 1620 . . . . . . . . 9 𝑧(∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0)
4137, 40nfralya 2570 . . . . . . . 8 𝑧𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0)
42 nfv 1574 . . . . . . . 8 𝑧(𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)
4341, 42nfan 1611 . . . . . . 7 𝑧(∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ))
44 nfv 1574 . . . . . . 7 𝑧(𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)
45 simpr 110 . . . . . . . . . . 11 (((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) ∧ (𝑦𝑥) < 0) → (𝑦𝑥) < 0)
46 simprr 531 . . . . . . . . . . . . . 14 ((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ)
4746ad2antrr 488 . . . . . . . . . . . . 13 ((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) → 𝑦 ∈ ℝ)
4847adantr 276 . . . . . . . . . . . 12 (((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) ∧ (𝑦𝑥) < 0) → 𝑦 ∈ ℝ)
49 simprl 529 . . . . . . . . . . . . . 14 ((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ)
5049ad2antrr 488 . . . . . . . . . . . . 13 ((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) → 𝑥 ∈ ℝ)
5150adantr 276 . . . . . . . . . . . 12 (((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) ∧ (𝑦𝑥) < 0) → 𝑥 ∈ ℝ)
5248, 51sublt0d 8713 . . . . . . . . . . 11 (((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) ∧ (𝑦𝑥) < 0) → ((𝑦𝑥) < 0 ↔ 𝑦 < 𝑥))
5345, 52mpbid 147 . . . . . . . . . 10 (((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) ∧ (𝑦𝑥) < 0) → 𝑦 < 𝑥)
54533mix3d 1198 . . . . . . . . 9 (((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) ∧ (𝑦𝑥) < 0) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
55 simpr 110 . . . . . . . . . . 11 (((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) ∧ 0 < (𝑦𝑥)) → 0 < (𝑦𝑥))
5650adantr 276 . . . . . . . . . . . 12 (((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) ∧ 0 < (𝑦𝑥)) → 𝑥 ∈ ℝ)
5747adantr 276 . . . . . . . . . . . 12 (((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) ∧ 0 < (𝑦𝑥)) → 𝑦 ∈ ℝ)
5856, 57posdifd 8675 . . . . . . . . . . 11 (((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) ∧ 0 < (𝑦𝑥)) → (𝑥 < 𝑦 ↔ 0 < (𝑦𝑥)))
5955, 58mpbird 167 . . . . . . . . . 10 (((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) ∧ 0 < (𝑦𝑥)) → 𝑥 < 𝑦)
60593mix1d 1196 . . . . . . . . 9 (((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) ∧ 0 < (𝑦𝑥)) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
6147recnd 8171 . . . . . . . . . . . 12 ((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) → 𝑦 ∈ ℂ)
6250recnd 8171 . . . . . . . . . . . 12 ((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) → 𝑥 ∈ ℂ)
6361, 62subcld 8453 . . . . . . . . . . 11 ((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) → (𝑦𝑥) ∈ ℂ)
64 simplr 528 . . . . . . . . . . . 12 ((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) → 𝑧 ∈ ℝ)
6564recnd 8171 . . . . . . . . . . 11 ((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) → 𝑧 ∈ ℂ)
66 simpr 110 . . . . . . . . . . . 12 ((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) → ((𝑦𝑥) · 𝑧) = 1)
67 1ap0 8733 . . . . . . . . . . . 12 1 # 0
6866, 67eqbrtrdi 4121 . . . . . . . . . . 11 ((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) → ((𝑦𝑥) · 𝑧) # 0)
6963, 65, 68mulap0bad 8802 . . . . . . . . . 10 ((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) → (𝑦𝑥) # 0)
7046, 49resubcld 8523 . . . . . . . . . . . 12 ((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑦𝑥) ∈ ℝ)
7170ad2antrr 488 . . . . . . . . . . 11 ((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) → (𝑦𝑥) ∈ ℝ)
72 reaplt 8731 . . . . . . . . . . 11 (((𝑦𝑥) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑦𝑥) # 0 ↔ ((𝑦𝑥) < 0 ∨ 0 < (𝑦𝑥))))
7371, 21, 72sylancl 413 . . . . . . . . . 10 ((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) → ((𝑦𝑥) # 0 ↔ ((𝑦𝑥) < 0 ∨ 0 < (𝑦𝑥))))
7469, 73mpbid 147 . . . . . . . . 9 ((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) → ((𝑦𝑥) < 0 ∨ 0 < (𝑦𝑥)))
7554, 60, 74mpjaodan 803 . . . . . . . 8 ((((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑧 ∈ ℝ) ∧ ((𝑦𝑥) · 𝑧) = 1) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
7675exp31 364 . . . . . . 7 ((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑧 ∈ ℝ → (((𝑦𝑥) · 𝑧) = 1 → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))))
7743, 44, 76rexlimd 2645 . . . . . 6 ((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (∃𝑧 ∈ ℝ ((𝑦𝑥) · 𝑧) = 1 → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)))
7877imp 124 . . . . 5 (((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ ∃𝑧 ∈ ℝ ((𝑦𝑥) · 𝑧) = 1) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
7946recnd 8171 . . . . . . . . 9 ((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℂ)
8079adantr 276 . . . . . . . 8 (((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑦𝑥) = 0) → 𝑦 ∈ ℂ)
8149recnd 8171 . . . . . . . . 9 ((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℂ)
8281adantr 276 . . . . . . . 8 (((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑦𝑥) = 0) → 𝑥 ∈ ℂ)
83 simpr 110 . . . . . . . 8 (((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑦𝑥) = 0) → (𝑦𝑥) = 0)
8480, 82, 83subeq0d 8461 . . . . . . 7 (((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑦𝑥) = 0) → 𝑦 = 𝑥)
8584equcomd 1753 . . . . . 6 (((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑦𝑥) = 0) → 𝑥 = 𝑦)
86853mix2d 1197 . . . . 5 (((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑦𝑥) = 0) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
87 oveq1 6007 . . . . . . . . 9 (𝑤 = (𝑦𝑥) → (𝑤 · 𝑧) = ((𝑦𝑥) · 𝑧))
8887eqeq1d 2238 . . . . . . . 8 (𝑤 = (𝑦𝑥) → ((𝑤 · 𝑧) = 1 ↔ ((𝑦𝑥) · 𝑧) = 1))
8988rexbidv 2531 . . . . . . 7 (𝑤 = (𝑦𝑥) → (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ↔ ∃𝑧 ∈ ℝ ((𝑦𝑥) · 𝑧) = 1))
90 eqeq1 2236 . . . . . . 7 (𝑤 = (𝑦𝑥) → (𝑤 = 0 ↔ (𝑦𝑥) = 0))
9189, 90orbi12d 798 . . . . . 6 (𝑤 = (𝑦𝑥) → ((∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ↔ (∃𝑧 ∈ ℝ ((𝑦𝑥) · 𝑧) = 1 ∨ (𝑦𝑥) = 0)))
92 simpl 109 . . . . . 6 ((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0))
9391, 92, 70rspcdva 2912 . . . . 5 ((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (∃𝑧 ∈ ℝ ((𝑦𝑥) · 𝑧) = 1 ∨ (𝑦𝑥) = 0))
9478, 86, 93mpjaodan 803 . . . 4 ((∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
9594ralrimivva 2612 . . 3 (∀𝑤 ∈ ℝ (∃𝑧 ∈ ℝ (𝑤 · 𝑧) = 1 ∨ 𝑤 = 0) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
9636, 95sylbi 121 . 2 (∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
9730, 96impbii 126 1 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713  w3o 1001   = wceq 1395  wcel 2200  wral 2508  wrex 2509   class class class wbr 4082  (class class class)co 6000  cc 7993  cr 7994  0cc0 7995  1c1 7996   · cmul 8000   < clt 8177  cmin 8313   # cap 8724   / cdiv 8815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816
This theorem is referenced by:  trirec0xor  16372
  Copyright terms: Public domain W3C validator