ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3mix2 GIF version

Theorem 3mix2 1157
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3mix2 (𝜑 → (𝜓𝜑𝜒))

Proof of Theorem 3mix2
StepHypRef Expression
1 3mix1 1156 . 2 (𝜑 → (𝜑𝜒𝜓))
2 3orrot 974 . 2 ((𝜓𝜑𝜒) ↔ (𝜑𝜒𝜓))
31, 2sylibr 133 1 (𝜑 → (𝜓𝜑𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  w3o 967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699
This theorem depends on definitions:  df-bi 116  df-3or 969
This theorem is referenced by:  3mix2i  1160  3mix2d  1163  3jaob  1292  funtpg  5239  elnn0z  9204  nn0le2is012  9273  nn01to3  9555  zabsle1  13540  triap  13908
  Copyright terms: Public domain W3C validator