ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3mix2 GIF version

Theorem 3mix2 1167
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3mix2 (𝜑 → (𝜓𝜑𝜒))

Proof of Theorem 3mix2
StepHypRef Expression
1 3mix1 1166 . 2 (𝜑 → (𝜑𝜒𝜓))
2 3orrot 984 . 2 ((𝜓𝜑𝜒) ↔ (𝜑𝜒𝜓))
31, 2sylibr 134 1 (𝜑 → (𝜓𝜑𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  w3o 977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709
This theorem depends on definitions:  df-bi 117  df-3or 979
This theorem is referenced by:  3mix2i  1170  3mix2d  1173  3jaob  1302  funtpg  5269  elnn0z  9268  nn0le2is012  9337  nn01to3  9619  zabsle1  14485  triap  14862
  Copyright terms: Public domain W3C validator