ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fztri3or GIF version

Theorem fztri3or 10041
Description: Trichotomy in terms of a finite interval of integers. (Contributed by Jim Kingdon, 1-Jun-2020.)
Assertion
Ref Expression
fztri3or ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))

Proof of Theorem fztri3or
StepHypRef Expression
1 3mix1 1166 . . 3 (𝐾 < 𝑀 → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))
21adantl 277 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑀) → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))
3 3mix3 1168 . . . 4 (𝑁 < 𝐾 → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))
43adantl 277 . . 3 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ 𝑁 < 𝐾) → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))
5 simpr 110 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → ¬ 𝐾 < 𝑀)
6 simpl2 1001 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → 𝑀 ∈ ℤ)
76zred 9377 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → 𝑀 ∈ ℝ)
8 simpl1 1000 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → 𝐾 ∈ ℤ)
98zred 9377 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → 𝐾 ∈ ℝ)
107, 9lenltd 8077 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → (𝑀𝐾 ↔ ¬ 𝐾 < 𝑀))
115, 10mpbird 167 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → 𝑀𝐾)
1211adantr 276 . . . . 5 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → 𝑀𝐾)
13 simpr 110 . . . . . 6 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → ¬ 𝑁 < 𝐾)
149adantr 276 . . . . . . 7 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → 𝐾 ∈ ℝ)
15 simpll3 1038 . . . . . . . 8 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → 𝑁 ∈ ℤ)
1615zred 9377 . . . . . . 7 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → 𝑁 ∈ ℝ)
1714, 16lenltd 8077 . . . . . 6 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → (𝐾𝑁 ↔ ¬ 𝑁 < 𝐾))
1813, 17mpbird 167 . . . . 5 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → 𝐾𝑁)
19 elfz 10016 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
2019adantr 276 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
2120adantr 276 . . . . 5 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
2212, 18, 21mpbir2and 944 . . . 4 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → 𝐾 ∈ (𝑀...𝑁))
23223mix2d 1173 . . 3 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))
24 zdclt 9332 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → DECID 𝑁 < 𝐾)
2524ancoms 268 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 < 𝐾)
26253adant2 1016 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 < 𝐾)
2726adantr 276 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → DECID 𝑁 < 𝐾)
28 df-dc 835 . . . 4 (DECID 𝑁 < 𝐾 ↔ (𝑁 < 𝐾 ∨ ¬ 𝑁 < 𝐾))
2927, 28sylib 122 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → (𝑁 < 𝐾 ∨ ¬ 𝑁 < 𝐾))
304, 23, 29mpjaodan 798 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))
31 zdclt 9332 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝐾 < 𝑀)
32313adant3 1017 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝐾 < 𝑀)
33 df-dc 835 . . 3 (DECID 𝐾 < 𝑀 ↔ (𝐾 < 𝑀 ∨ ¬ 𝐾 < 𝑀))
3432, 33sylib 122 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀 ∨ ¬ 𝐾 < 𝑀))
352, 30, 34mpjaodan 798 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  DECID wdc 834  w3o 977  w3a 978  wcel 2148   class class class wbr 4005  (class class class)co 5877  cr 7812   < clt 7994  cle 7995  cz 9255  ...cfz 10010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-fz 10011
This theorem is referenced by:  fzdcel  10042  hashfiv01gt1  10764
  Copyright terms: Public domain W3C validator