ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fztri3or GIF version

Theorem fztri3or 10161
Description: Trichotomy in terms of a finite interval of integers. (Contributed by Jim Kingdon, 1-Jun-2020.)
Assertion
Ref Expression
fztri3or ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))

Proof of Theorem fztri3or
StepHypRef Expression
1 3mix1 1169 . . 3 (𝐾 < 𝑀 → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))
21adantl 277 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑀) → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))
3 3mix3 1171 . . . 4 (𝑁 < 𝐾 → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))
43adantl 277 . . 3 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ 𝑁 < 𝐾) → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))
5 simpr 110 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → ¬ 𝐾 < 𝑀)
6 simpl2 1004 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → 𝑀 ∈ ℤ)
76zred 9495 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → 𝑀 ∈ ℝ)
8 simpl1 1003 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → 𝐾 ∈ ℤ)
98zred 9495 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → 𝐾 ∈ ℝ)
107, 9lenltd 8190 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → (𝑀𝐾 ↔ ¬ 𝐾 < 𝑀))
115, 10mpbird 167 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → 𝑀𝐾)
1211adantr 276 . . . . 5 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → 𝑀𝐾)
13 simpr 110 . . . . . 6 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → ¬ 𝑁 < 𝐾)
149adantr 276 . . . . . . 7 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → 𝐾 ∈ ℝ)
15 simpll3 1041 . . . . . . . 8 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → 𝑁 ∈ ℤ)
1615zred 9495 . . . . . . 7 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → 𝑁 ∈ ℝ)
1714, 16lenltd 8190 . . . . . 6 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → (𝐾𝑁 ↔ ¬ 𝑁 < 𝐾))
1813, 17mpbird 167 . . . . 5 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → 𝐾𝑁)
19 elfz 10136 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
2019adantr 276 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
2120adantr 276 . . . . 5 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
2212, 18, 21mpbir2and 947 . . . 4 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → 𝐾 ∈ (𝑀...𝑁))
23223mix2d 1176 . . 3 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))
24 zdclt 9450 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → DECID 𝑁 < 𝐾)
2524ancoms 268 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 < 𝐾)
26253adant2 1019 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 < 𝐾)
2726adantr 276 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → DECID 𝑁 < 𝐾)
28 df-dc 837 . . . 4 (DECID 𝑁 < 𝐾 ↔ (𝑁 < 𝐾 ∨ ¬ 𝑁 < 𝐾))
2927, 28sylib 122 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → (𝑁 < 𝐾 ∨ ¬ 𝑁 < 𝐾))
304, 23, 29mpjaodan 800 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))
31 zdclt 9450 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝐾 < 𝑀)
32313adant3 1020 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝐾 < 𝑀)
33 df-dc 837 . . 3 (DECID 𝐾 < 𝑀 ↔ (𝐾 < 𝑀 ∨ ¬ 𝐾 < 𝑀))
3432, 33sylib 122 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀 ∨ ¬ 𝐾 < 𝑀))
352, 30, 34mpjaodan 800 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836  w3o 980  w3a 981  wcel 2176   class class class wbr 4044  (class class class)co 5944  cr 7924   < clt 8107  cle 8108  cz 9372  ...cfz 10130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-fz 10131
This theorem is referenced by:  fzdcel  10162  hashfiv01gt1  10927
  Copyright terms: Public domain W3C validator