ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fztri3or GIF version

Theorem fztri3or 9947
Description: Trichotomy in terms of a finite interval of integers. (Contributed by Jim Kingdon, 1-Jun-2020.)
Assertion
Ref Expression
fztri3or ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))

Proof of Theorem fztri3or
StepHypRef Expression
1 3mix1 1151 . . 3 (𝐾 < 𝑀 → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))
21adantl 275 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑀) → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))
3 3mix3 1153 . . . 4 (𝑁 < 𝐾 → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))
43adantl 275 . . 3 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ 𝑁 < 𝐾) → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))
5 simpr 109 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → ¬ 𝐾 < 𝑀)
6 simpl2 986 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → 𝑀 ∈ ℤ)
76zred 9291 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → 𝑀 ∈ ℝ)
8 simpl1 985 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → 𝐾 ∈ ℤ)
98zred 9291 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → 𝐾 ∈ ℝ)
107, 9lenltd 7997 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → (𝑀𝐾 ↔ ¬ 𝐾 < 𝑀))
115, 10mpbird 166 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → 𝑀𝐾)
1211adantr 274 . . . . 5 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → 𝑀𝐾)
13 simpr 109 . . . . . 6 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → ¬ 𝑁 < 𝐾)
149adantr 274 . . . . . . 7 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → 𝐾 ∈ ℝ)
15 simpll3 1023 . . . . . . . 8 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → 𝑁 ∈ ℤ)
1615zred 9291 . . . . . . 7 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → 𝑁 ∈ ℝ)
1714, 16lenltd 7997 . . . . . 6 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → (𝐾𝑁 ↔ ¬ 𝑁 < 𝐾))
1813, 17mpbird 166 . . . . 5 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → 𝐾𝑁)
19 elfz 9924 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
2019adantr 274 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
2120adantr 274 . . . . 5 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
2212, 18, 21mpbir2and 929 . . . 4 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → 𝐾 ∈ (𝑀...𝑁))
23223mix2d 1158 . . 3 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))
24 zdclt 9246 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → DECID 𝑁 < 𝐾)
2524ancoms 266 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 < 𝐾)
26253adant2 1001 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 < 𝐾)
2726adantr 274 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → DECID 𝑁 < 𝐾)
28 df-dc 821 . . . 4 (DECID 𝑁 < 𝐾 ↔ (𝑁 < 𝐾 ∨ ¬ 𝑁 < 𝐾))
2927, 28sylib 121 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → (𝑁 < 𝐾 ∨ ¬ 𝑁 < 𝐾))
304, 23, 29mpjaodan 788 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))
31 zdclt 9246 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝐾 < 𝑀)
32313adant3 1002 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝐾 < 𝑀)
33 df-dc 821 . . 3 (DECID 𝐾 < 𝑀 ↔ (𝐾 < 𝑀 ∨ ¬ 𝐾 < 𝑀))
3432, 33sylib 121 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀 ∨ ¬ 𝐾 < 𝑀))
352, 30, 34mpjaodan 788 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 820  w3o 962  w3a 963  wcel 2128   class class class wbr 3967  (class class class)co 5826  cr 7733   < clt 7914  cle 7915  cz 9172  ...cfz 9918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-pow 4137  ax-pr 4171  ax-un 4395  ax-setind 4498  ax-cnex 7825  ax-resscn 7826  ax-1cn 7827  ax-1re 7828  ax-icn 7829  ax-addcl 7830  ax-addrcl 7831  ax-mulcl 7832  ax-addcom 7834  ax-addass 7836  ax-distr 7838  ax-i2m1 7839  ax-0lt1 7840  ax-0id 7842  ax-rnegex 7843  ax-cnre 7845  ax-pre-ltirr 7846  ax-pre-ltwlin 7847  ax-pre-lttrn 7848  ax-pre-ltadd 7850
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-br 3968  df-opab 4028  df-id 4255  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-iota 5137  df-fun 5174  df-fv 5180  df-riota 5782  df-ov 5829  df-oprab 5830  df-mpo 5831  df-pnf 7916  df-mnf 7917  df-xr 7918  df-ltxr 7919  df-le 7920  df-sub 8052  df-neg 8053  df-inn 8839  df-n0 9096  df-z 9173  df-fz 9919
This theorem is referenced by:  fzdcel  9948  hashfiv01gt1  10667
  Copyright terms: Public domain W3C validator