ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fztri3or GIF version

Theorem fztri3or 10114
Description: Trichotomy in terms of a finite interval of integers. (Contributed by Jim Kingdon, 1-Jun-2020.)
Assertion
Ref Expression
fztri3or ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))

Proof of Theorem fztri3or
StepHypRef Expression
1 3mix1 1168 . . 3 (𝐾 < 𝑀 → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))
21adantl 277 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑀) → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))
3 3mix3 1170 . . . 4 (𝑁 < 𝐾 → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))
43adantl 277 . . 3 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ 𝑁 < 𝐾) → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))
5 simpr 110 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → ¬ 𝐾 < 𝑀)
6 simpl2 1003 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → 𝑀 ∈ ℤ)
76zred 9448 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → 𝑀 ∈ ℝ)
8 simpl1 1002 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → 𝐾 ∈ ℤ)
98zred 9448 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → 𝐾 ∈ ℝ)
107, 9lenltd 8144 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → (𝑀𝐾 ↔ ¬ 𝐾 < 𝑀))
115, 10mpbird 167 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → 𝑀𝐾)
1211adantr 276 . . . . 5 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → 𝑀𝐾)
13 simpr 110 . . . . . 6 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → ¬ 𝑁 < 𝐾)
149adantr 276 . . . . . . 7 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → 𝐾 ∈ ℝ)
15 simpll3 1040 . . . . . . . 8 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → 𝑁 ∈ ℤ)
1615zred 9448 . . . . . . 7 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → 𝑁 ∈ ℝ)
1714, 16lenltd 8144 . . . . . 6 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → (𝐾𝑁 ↔ ¬ 𝑁 < 𝐾))
1813, 17mpbird 167 . . . . 5 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → 𝐾𝑁)
19 elfz 10089 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
2019adantr 276 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
2120adantr 276 . . . . 5 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
2212, 18, 21mpbir2and 946 . . . 4 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → 𝐾 ∈ (𝑀...𝑁))
23223mix2d 1175 . . 3 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) ∧ ¬ 𝑁 < 𝐾) → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))
24 zdclt 9403 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → DECID 𝑁 < 𝐾)
2524ancoms 268 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 < 𝐾)
26253adant2 1018 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 < 𝐾)
2726adantr 276 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → DECID 𝑁 < 𝐾)
28 df-dc 836 . . . 4 (DECID 𝑁 < 𝐾 ↔ (𝑁 < 𝐾 ∨ ¬ 𝑁 < 𝐾))
2927, 28sylib 122 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → (𝑁 < 𝐾 ∨ ¬ 𝑁 < 𝐾))
304, 23, 29mpjaodan 799 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝐾 < 𝑀) → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))
31 zdclt 9403 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝐾 < 𝑀)
32313adant3 1019 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝐾 < 𝑀)
33 df-dc 836 . . 3 (DECID 𝐾 < 𝑀 ↔ (𝐾 < 𝑀 ∨ ¬ 𝐾 < 𝑀))
3432, 33sylib 122 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀 ∨ ¬ 𝐾 < 𝑀))
352, 30, 34mpjaodan 799 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3o 979  w3a 980  wcel 2167   class class class wbr 4033  (class class class)co 5922  cr 7878   < clt 8061  cle 8062  cz 9326  ...cfz 10083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-fz 10084
This theorem is referenced by:  fzdcel  10115  hashfiv01gt1  10874
  Copyright terms: Public domain W3C validator