Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3orim123d | GIF version |
Description: Deduction joining 3 implications to form implication of disjunctions. (Contributed by NM, 4-Apr-1997.) |
Ref | Expression |
---|---|
3anim123d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3anim123d.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
3anim123d.3 | ⊢ (𝜑 → (𝜂 → 𝜁)) |
Ref | Expression |
---|---|
3orim123d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜂) → (𝜒 ∨ 𝜏 ∨ 𝜁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anim123d.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 3anim123d.2 | . . . 4 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
3 | 1, 2 | orim12d 776 | . . 3 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → (𝜒 ∨ 𝜏))) |
4 | 3anim123d.3 | . . 3 ⊢ (𝜑 → (𝜂 → 𝜁)) | |
5 | 3, 4 | orim12d 776 | . 2 ⊢ (𝜑 → (((𝜓 ∨ 𝜃) ∨ 𝜂) → ((𝜒 ∨ 𝜏) ∨ 𝜁))) |
6 | df-3or 969 | . 2 ⊢ ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜂)) | |
7 | df-3or 969 | . 2 ⊢ ((𝜒 ∨ 𝜏 ∨ 𝜁) ↔ ((𝜒 ∨ 𝜏) ∨ 𝜁)) | |
8 | 5, 6, 7 | 3imtr4g 204 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜂) → (𝜒 ∨ 𝜏 ∨ 𝜁))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 698 ∨ w3o 967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-3or 969 |
This theorem is referenced by: ztri3or0 9233 |
Copyright terms: Public domain | W3C validator |