ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anim123d GIF version

Theorem 3anim123d 1353
Description: Deduction joining 3 implications to form implication of conjunctions. (Contributed by NM, 24-Feb-2005.)
Hypotheses
Ref Expression
3anim123d.1 (𝜑 → (𝜓𝜒))
3anim123d.2 (𝜑 → (𝜃𝜏))
3anim123d.3 (𝜑 → (𝜂𝜁))
Assertion
Ref Expression
3anim123d (𝜑 → ((𝜓𝜃𝜂) → (𝜒𝜏𝜁)))

Proof of Theorem 3anim123d
StepHypRef Expression
1 3anim123d.1 . . . 4 (𝜑 → (𝜓𝜒))
2 3anim123d.2 . . . 4 (𝜑 → (𝜃𝜏))
31, 2anim12d 335 . . 3 (𝜑 → ((𝜓𝜃) → (𝜒𝜏)))
4 3anim123d.3 . . 3 (𝜑 → (𝜂𝜁))
53, 4anim12d 335 . 2 (𝜑 → (((𝜓𝜃) ∧ 𝜂) → ((𝜒𝜏) ∧ 𝜁)))
6 df-3an 1004 . 2 ((𝜓𝜃𝜂) ↔ ((𝜓𝜃) ∧ 𝜂))
7 df-3an 1004 . 2 ((𝜒𝜏𝜁) ↔ ((𝜒𝜏) ∧ 𝜁))
85, 6, 73imtr4g 205 1 (𝜑 → ((𝜓𝜃𝜂) → (𝜒𝜏𝜁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  hb3and  1536  pofun  4403  soss  4405  wessep  4670  isopolem  5952  isosolem  5954  issmo2  6441  smores  6444  issubmnd  13483  issubg2m  13734  issubrng2  14182  issubrg2  14213  rnglidlmsgrp  14469  rnglidlrng  14470  sslm  14929
  Copyright terms: Public domain W3C validator