![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ztri3or0 | GIF version |
Description: Integer trichotomy (with zero). (Contributed by Jim Kingdon, 14-Mar-2020.) |
Ref | Expression |
---|---|
ztri3or0 | ⊢ (𝑁 ∈ ℤ → (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elz 9322 | . . . 4 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
2 | 1 | simprbi 275 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) |
3 | idd 21 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 = 0 → 𝑁 = 0)) | |
4 | nngt0 9009 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
5 | 4 | a1i 9 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 ∈ ℕ → 0 < 𝑁)) |
6 | nngt0 9009 | . . . . 5 ⊢ (-𝑁 ∈ ℕ → 0 < -𝑁) | |
7 | zre 9324 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
8 | 7 | lt0neg1d 8536 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 < 0 ↔ 0 < -𝑁)) |
9 | 6, 8 | imbitrrid 156 | . . . 4 ⊢ (𝑁 ∈ ℤ → (-𝑁 ∈ ℕ → 𝑁 < 0)) |
10 | 3, 5, 9 | 3orim123d 1331 | . . 3 ⊢ (𝑁 ∈ ℤ → ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) → (𝑁 = 0 ∨ 0 < 𝑁 ∨ 𝑁 < 0))) |
11 | 2, 10 | mpd 13 | . 2 ⊢ (𝑁 ∈ ℤ → (𝑁 = 0 ∨ 0 < 𝑁 ∨ 𝑁 < 0)) |
12 | 3orrot 986 | . 2 ⊢ ((𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁) ↔ (𝑁 = 0 ∨ 0 < 𝑁 ∨ 𝑁 < 0)) | |
13 | 11, 12 | sylibr 134 | 1 ⊢ (𝑁 ∈ ℤ → (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ w3o 979 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 ℝcr 7873 0cc0 7874 < clt 8056 -cneg 8193 ℕcn 8984 ℤcz 9320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-z 9321 |
This theorem is referenced by: ztri3or 9363 zdvdsdc 11958 divalglemex 12066 divalg 12068 bezoutlemmain 12138 mulgval 13195 mulgfng 13197 subgmulg 13261 |
Copyright terms: Public domain | W3C validator |