ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ztri3or0 GIF version

Theorem ztri3or0 8702
Description: Integer trichotomy (with zero). (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
ztri3or0 (𝑁 ∈ ℤ → (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁))

Proof of Theorem ztri3or0
StepHypRef Expression
1 elz 8662 . . . 4 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
21simprbi 269 . . 3 (𝑁 ∈ ℤ → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
3 idd 21 . . . 4 (𝑁 ∈ ℤ → (𝑁 = 0 → 𝑁 = 0))
4 nngt0 8359 . . . . 5 (𝑁 ∈ ℕ → 0 < 𝑁)
54a1i 9 . . . 4 (𝑁 ∈ ℤ → (𝑁 ∈ ℕ → 0 < 𝑁))
6 nngt0 8359 . . . . 5 (-𝑁 ∈ ℕ → 0 < -𝑁)
7 zre 8664 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
87lt0neg1d 7911 . . . . 5 (𝑁 ∈ ℤ → (𝑁 < 0 ↔ 0 < -𝑁))
96, 8syl5ibr 154 . . . 4 (𝑁 ∈ ℤ → (-𝑁 ∈ ℕ → 𝑁 < 0))
103, 5, 93orim123d 1254 . . 3 (𝑁 ∈ ℤ → ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) → (𝑁 = 0 ∨ 0 < 𝑁𝑁 < 0)))
112, 10mpd 13 . 2 (𝑁 ∈ ℤ → (𝑁 = 0 ∨ 0 < 𝑁𝑁 < 0))
12 3orrot 928 . 2 ((𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁) ↔ (𝑁 = 0 ∨ 0 < 𝑁𝑁 < 0))
1311, 12sylibr 132 1 (𝑁 ∈ ℤ → (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  w3o 921   = wceq 1287  wcel 1436   class class class wbr 3814  cr 7270  0cc0 7271   < clt 7443  -cneg 7575  cn 8334  cz 8660
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3925  ax-pow 3977  ax-pr 4003  ax-un 4227  ax-setind 4319  ax-cnex 7357  ax-resscn 7358  ax-1cn 7359  ax-1re 7360  ax-icn 7361  ax-addcl 7362  ax-addrcl 7363  ax-mulcl 7364  ax-addcom 7366  ax-addass 7368  ax-distr 7370  ax-i2m1 7371  ax-0lt1 7372  ax-0id 7374  ax-rnegex 7375  ax-cnre 7377  ax-pre-ltirr 7378  ax-pre-ltwlin 7379  ax-pre-lttrn 7380  ax-pre-ltadd 7382
This theorem depends on definitions:  df-bi 115  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2616  df-sbc 2829  df-dif 2988  df-un 2990  df-in 2992  df-ss 2999  df-pw 3411  df-sn 3431  df-pr 3432  df-op 3434  df-uni 3631  df-int 3666  df-br 3815  df-opab 3869  df-id 4087  df-xp 4410  df-rel 4411  df-cnv 4412  df-co 4413  df-dm 4414  df-iota 4937  df-fun 4974  df-fv 4980  df-riota 5550  df-ov 5597  df-oprab 5598  df-mpt2 5599  df-pnf 7445  df-mnf 7446  df-xr 7447  df-ltxr 7448  df-le 7449  df-sub 7576  df-neg 7577  df-inn 8335  df-z 8661
This theorem is referenced by:  ztri3or  8703  zdvdsdc  10611  divalglemex  10716  divalg  10718  bezoutlemmain  10781
  Copyright terms: Public domain W3C validator