| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ztri3or0 | GIF version | ||
| Description: Integer trichotomy (with zero). (Contributed by Jim Kingdon, 14-Mar-2020.) |
| Ref | Expression |
|---|---|
| ztri3or0 | ⊢ (𝑁 ∈ ℤ → (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz 9345 | . . . 4 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
| 2 | 1 | simprbi 275 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) |
| 3 | idd 21 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 = 0 → 𝑁 = 0)) | |
| 4 | nngt0 9032 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
| 5 | 4 | a1i 9 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 ∈ ℕ → 0 < 𝑁)) |
| 6 | nngt0 9032 | . . . . 5 ⊢ (-𝑁 ∈ ℕ → 0 < -𝑁) | |
| 7 | zre 9347 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 8 | 7 | lt0neg1d 8559 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 < 0 ↔ 0 < -𝑁)) |
| 9 | 6, 8 | imbitrrid 156 | . . . 4 ⊢ (𝑁 ∈ ℤ → (-𝑁 ∈ ℕ → 𝑁 < 0)) |
| 10 | 3, 5, 9 | 3orim123d 1331 | . . 3 ⊢ (𝑁 ∈ ℤ → ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) → (𝑁 = 0 ∨ 0 < 𝑁 ∨ 𝑁 < 0))) |
| 11 | 2, 10 | mpd 13 | . 2 ⊢ (𝑁 ∈ ℤ → (𝑁 = 0 ∨ 0 < 𝑁 ∨ 𝑁 < 0)) |
| 12 | 3orrot 986 | . 2 ⊢ ((𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁) ↔ (𝑁 = 0 ∨ 0 < 𝑁 ∨ 𝑁 < 0)) | |
| 13 | 11, 12 | sylibr 134 | 1 ⊢ (𝑁 ∈ ℤ → (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ w3o 979 = wceq 1364 ∈ wcel 2167 class class class wbr 4034 ℝcr 7895 0cc0 7896 < clt 8078 -cneg 8215 ℕcn 9007 ℤcz 9343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-z 9344 |
| This theorem is referenced by: ztri3or 9386 zdvdsdc 11994 divalglemex 12104 divalg 12106 bezoutlemmain 12190 mulgval 13328 mulgfng 13330 subgmulg 13394 |
| Copyright terms: Public domain | W3C validator |