ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ztri3or0 GIF version

Theorem ztri3or0 9298
Description: Integer trichotomy (with zero). (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
ztri3or0 (𝑁 ∈ ℤ → (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁))

Proof of Theorem ztri3or0
StepHypRef Expression
1 elz 9258 . . . 4 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
21simprbi 275 . . 3 (𝑁 ∈ ℤ → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
3 idd 21 . . . 4 (𝑁 ∈ ℤ → (𝑁 = 0 → 𝑁 = 0))
4 nngt0 8947 . . . . 5 (𝑁 ∈ ℕ → 0 < 𝑁)
54a1i 9 . . . 4 (𝑁 ∈ ℤ → (𝑁 ∈ ℕ → 0 < 𝑁))
6 nngt0 8947 . . . . 5 (-𝑁 ∈ ℕ → 0 < -𝑁)
7 zre 9260 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
87lt0neg1d 8475 . . . . 5 (𝑁 ∈ ℤ → (𝑁 < 0 ↔ 0 < -𝑁))
96, 8imbitrrid 156 . . . 4 (𝑁 ∈ ℤ → (-𝑁 ∈ ℕ → 𝑁 < 0))
103, 5, 93orim123d 1320 . . 3 (𝑁 ∈ ℤ → ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) → (𝑁 = 0 ∨ 0 < 𝑁𝑁 < 0)))
112, 10mpd 13 . 2 (𝑁 ∈ ℤ → (𝑁 = 0 ∨ 0 < 𝑁𝑁 < 0))
12 3orrot 984 . 2 ((𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁) ↔ (𝑁 = 0 ∨ 0 < 𝑁𝑁 < 0))
1311, 12sylibr 134 1 (𝑁 ∈ ℤ → (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  w3o 977   = wceq 1353  wcel 2148   class class class wbr 4005  cr 7813  0cc0 7814   < clt 7995  -cneg 8132  cn 8922  cz 9256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-addass 7916  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-0id 7922  ax-rnegex 7923  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-ltadd 7930
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-inn 8923  df-z 9257
This theorem is referenced by:  ztri3or  9299  zdvdsdc  11822  divalglemex  11930  divalg  11932  bezoutlemmain  12002  mulgval  12992  mulgfng  12993  subgmulg  13054
  Copyright terms: Public domain W3C validator