Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ztri3or0 | GIF version |
Description: Integer trichotomy (with zero). (Contributed by Jim Kingdon, 14-Mar-2020.) |
Ref | Expression |
---|---|
ztri3or0 | ⊢ (𝑁 ∈ ℤ → (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elz 9214 | . . . 4 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
2 | 1 | simprbi 273 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) |
3 | idd 21 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 = 0 → 𝑁 = 0)) | |
4 | nngt0 8903 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
5 | 4 | a1i 9 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 ∈ ℕ → 0 < 𝑁)) |
6 | nngt0 8903 | . . . . 5 ⊢ (-𝑁 ∈ ℕ → 0 < -𝑁) | |
7 | zre 9216 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
8 | 7 | lt0neg1d 8434 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 < 0 ↔ 0 < -𝑁)) |
9 | 6, 8 | syl5ibr 155 | . . . 4 ⊢ (𝑁 ∈ ℤ → (-𝑁 ∈ ℕ → 𝑁 < 0)) |
10 | 3, 5, 9 | 3orim123d 1315 | . . 3 ⊢ (𝑁 ∈ ℤ → ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) → (𝑁 = 0 ∨ 0 < 𝑁 ∨ 𝑁 < 0))) |
11 | 2, 10 | mpd 13 | . 2 ⊢ (𝑁 ∈ ℤ → (𝑁 = 0 ∨ 0 < 𝑁 ∨ 𝑁 < 0)) |
12 | 3orrot 979 | . 2 ⊢ ((𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁) ↔ (𝑁 = 0 ∨ 0 < 𝑁 ∨ 𝑁 < 0)) | |
13 | 11, 12 | sylibr 133 | 1 ⊢ (𝑁 ∈ ℤ → (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ w3o 972 = wceq 1348 ∈ wcel 2141 class class class wbr 3989 ℝcr 7773 0cc0 7774 < clt 7954 -cneg 8091 ℕcn 8878 ℤcz 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-z 9213 |
This theorem is referenced by: ztri3or 9255 zdvdsdc 11774 divalglemex 11881 divalg 11883 bezoutlemmain 11953 |
Copyright terms: Public domain | W3C validator |