![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ztri3or0 | GIF version |
Description: Integer trichotomy (with zero). (Contributed by Jim Kingdon, 14-Mar-2020.) |
Ref | Expression |
---|---|
ztri3or0 | ⊢ (𝑁 ∈ ℤ → (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elz 9258 | . . . 4 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
2 | 1 | simprbi 275 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) |
3 | idd 21 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 = 0 → 𝑁 = 0)) | |
4 | nngt0 8947 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
5 | 4 | a1i 9 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 ∈ ℕ → 0 < 𝑁)) |
6 | nngt0 8947 | . . . . 5 ⊢ (-𝑁 ∈ ℕ → 0 < -𝑁) | |
7 | zre 9260 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
8 | 7 | lt0neg1d 8475 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 < 0 ↔ 0 < -𝑁)) |
9 | 6, 8 | imbitrrid 156 | . . . 4 ⊢ (𝑁 ∈ ℤ → (-𝑁 ∈ ℕ → 𝑁 < 0)) |
10 | 3, 5, 9 | 3orim123d 1320 | . . 3 ⊢ (𝑁 ∈ ℤ → ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) → (𝑁 = 0 ∨ 0 < 𝑁 ∨ 𝑁 < 0))) |
11 | 2, 10 | mpd 13 | . 2 ⊢ (𝑁 ∈ ℤ → (𝑁 = 0 ∨ 0 < 𝑁 ∨ 𝑁 < 0)) |
12 | 3orrot 984 | . 2 ⊢ ((𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁) ↔ (𝑁 = 0 ∨ 0 < 𝑁 ∨ 𝑁 < 0)) | |
13 | 11, 12 | sylibr 134 | 1 ⊢ (𝑁 ∈ ℤ → (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ w3o 977 = wceq 1353 ∈ wcel 2148 class class class wbr 4005 ℝcr 7813 0cc0 7814 < clt 7995 -cneg 8132 ℕcn 8922 ℤcz 9256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-addcom 7914 ax-addass 7916 ax-distr 7918 ax-i2m1 7919 ax-0lt1 7920 ax-0id 7922 ax-rnegex 7923 ax-cnre 7925 ax-pre-ltirr 7926 ax-pre-ltwlin 7927 ax-pre-lttrn 7928 ax-pre-ltadd 7930 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-pnf 7997 df-mnf 7998 df-xr 7999 df-ltxr 8000 df-le 8001 df-sub 8133 df-neg 8134 df-inn 8923 df-z 9257 |
This theorem is referenced by: ztri3or 9299 zdvdsdc 11822 divalglemex 11930 divalg 11932 bezoutlemmain 12002 mulgval 12992 mulgfng 12993 subgmulg 13054 |
Copyright terms: Public domain | W3C validator |