| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ztri3or0 | GIF version | ||
| Description: Integer trichotomy (with zero). (Contributed by Jim Kingdon, 14-Mar-2020.) |
| Ref | Expression |
|---|---|
| ztri3or0 | ⊢ (𝑁 ∈ ℤ → (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz 9373 | . . . 4 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
| 2 | 1 | simprbi 275 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) |
| 3 | idd 21 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 = 0 → 𝑁 = 0)) | |
| 4 | nngt0 9060 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
| 5 | 4 | a1i 9 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 ∈ ℕ → 0 < 𝑁)) |
| 6 | nngt0 9060 | . . . . 5 ⊢ (-𝑁 ∈ ℕ → 0 < -𝑁) | |
| 7 | zre 9375 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 8 | 7 | lt0neg1d 8587 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 < 0 ↔ 0 < -𝑁)) |
| 9 | 6, 8 | imbitrrid 156 | . . . 4 ⊢ (𝑁 ∈ ℤ → (-𝑁 ∈ ℕ → 𝑁 < 0)) |
| 10 | 3, 5, 9 | 3orim123d 1332 | . . 3 ⊢ (𝑁 ∈ ℤ → ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) → (𝑁 = 0 ∨ 0 < 𝑁 ∨ 𝑁 < 0))) |
| 11 | 2, 10 | mpd 13 | . 2 ⊢ (𝑁 ∈ ℤ → (𝑁 = 0 ∨ 0 < 𝑁 ∨ 𝑁 < 0)) |
| 12 | 3orrot 986 | . 2 ⊢ ((𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁) ↔ (𝑁 = 0 ∨ 0 < 𝑁 ∨ 𝑁 < 0)) | |
| 13 | 11, 12 | sylibr 134 | 1 ⊢ (𝑁 ∈ ℤ → (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ w3o 979 = wceq 1372 ∈ wcel 2175 class class class wbr 4043 ℝcr 7923 0cc0 7924 < clt 8106 -cneg 8243 ℕcn 9035 ℤcz 9371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-z 9372 |
| This theorem is referenced by: ztri3or 9414 zdvdsdc 12065 divalglemex 12175 divalg 12177 bezoutlemmain 12261 mulgval 13400 mulgfng 13402 subgmulg 13466 |
| Copyright terms: Public domain | W3C validator |