![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3imtr4g | GIF version |
Description: More general version of 3imtr4i 201. Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
Ref | Expression |
---|---|
3imtr4g.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3imtr4g.2 | ⊢ (𝜃 ↔ 𝜓) |
3imtr4g.3 | ⊢ (𝜏 ↔ 𝜒) |
Ref | Expression |
---|---|
3imtr4g | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr4g.2 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
2 | 3imtr4g.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | biimtrid 152 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) |
4 | 3imtr4g.3 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
5 | 3, 4 | imbitrrdi 162 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3anim123d 1330 3orim123d 1331 hbbid 1586 spsbim 1854 moim 2106 moimv 2108 2euswapdc 2133 nelcon3d 2470 ralim 2553 ralimdaa 2560 ralimdv2 2564 rexim 2588 reximdv2 2593 rmoim 2962 ssel 3174 sstr2 3187 ssrexf 3242 ssrmof 3243 sscon 3294 ssdif 3295 unss1 3329 ssrin 3385 prel12 3798 uniss 3857 ssuni 3858 intss 3892 intssunim 3893 iunss1 3924 iinss1 3925 ss2iun 3928 disjss2 4010 disjss1 4013 ssbrd 4073 sspwb 4246 poss 4330 pofun 4344 soss 4346 sess1 4369 sess2 4370 ordwe 4609 wessep 4611 peano2 4628 finds 4633 finds2 4634 relss 4747 ssrel 4748 ssrel2 4750 ssrelrel 4760 xpsspw 4772 relop 4813 cnvss 4836 dmss 4862 dmcosseq 4934 funss 5274 imadif 5335 imain 5337 fss 5416 fun 5427 brprcneu 5548 isores3 5859 isopolem 5866 isosolem 5868 tposfn2 6321 tposfo2 6322 tposf1o2 6325 smores 6347 tfr1onlemaccex 6403 tfrcllemaccex 6416 iinerm 6663 xpdom2 6887 ssenen 6909 exmidpw 6966 exmidpweq 6967 nnnninfeq2 7190 recexprlemlol 7688 recexprlemupu 7690 axpre-ltwlin 7945 axpre-apti 7947 nnindnn 7955 nnind 9000 uzind 9431 hashfacen 10910 cau3lem 11261 tgcl 14243 epttop 14269 txcnp 14450 plycj 14939 gausslemma2dlem0i 15214 gausslemma2dlem1a 15215 |
Copyright terms: Public domain | W3C validator |