| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imtr4g | GIF version | ||
| Description: More general version of 3imtr4i 201. Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| 3imtr4g.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3imtr4g.2 | ⊢ (𝜃 ↔ 𝜓) |
| 3imtr4g.3 | ⊢ (𝜏 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| 3imtr4g | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr4g.2 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
| 2 | 3imtr4g.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | biimtrid 152 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) |
| 4 | 3imtr4g.3 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
| 5 | 3, 4 | imbitrrdi 162 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3anim123d 1332 3orim123d 1333 hbbid 1599 spsbim 1867 moim 2120 moimv 2122 2euswapdc 2147 nelcon3d 2484 ralim 2567 ralimdaa 2574 ralimdv2 2578 rexim 2602 reximdv2 2607 rmoim 2981 ssel 3195 sstr2 3208 ssrexf 3263 ssrmof 3264 sscon 3315 ssdif 3316 unss1 3350 ssrin 3406 prel12 3825 uniss 3885 ssuni 3886 intss 3920 intssunim 3921 iunss1 3952 iinss1 3953 ss2iun 3956 disjss2 4038 disjss1 4041 ssbrd 4102 sspwb 4278 poss 4363 pofun 4377 soss 4379 sess1 4402 sess2 4403 ordwe 4642 wessep 4644 peano2 4661 finds 4666 finds2 4667 relss 4780 ssrel 4781 ssrel2 4783 ssrelrel 4793 xpsspw 4805 relop 4846 cnvss 4869 dmss 4896 dmcosseq 4969 funss 5309 imadif 5373 imain 5375 fss 5457 fun 5469 brprcneu 5592 isores3 5907 isopolem 5914 isosolem 5916 tposfn2 6375 tposfo2 6376 tposf1o2 6379 smores 6401 tfr1onlemaccex 6457 tfrcllemaccex 6470 iinerm 6717 xpdom2 6951 ssenen 6973 exmidpw 7031 exmidpweq 7032 nnnninfeq2 7257 recexprlemlol 7774 recexprlemupu 7776 axpre-ltwlin 8031 axpre-apti 8033 nnindnn 8041 nnind 9087 uzind 9519 hashfacen 11018 pfxccatin12lem2 11222 cau3lem 11540 tgcl 14651 epttop 14677 txcnp 14858 plycj 15348 gausslemma2dlem0i 15649 gausslemma2dlem1a 15650 nnnninfex 16161 |
| Copyright terms: Public domain | W3C validator |