Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3imtr4g | GIF version |
Description: More general version of 3imtr4i 200. Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
Ref | Expression |
---|---|
3imtr4g.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3imtr4g.2 | ⊢ (𝜃 ↔ 𝜓) |
3imtr4g.3 | ⊢ (𝜏 ↔ 𝜒) |
Ref | Expression |
---|---|
3imtr4g | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr4g.2 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
2 | 3imtr4g.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | syl5bi 151 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) |
4 | 3imtr4g.3 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
5 | 3, 4 | syl6ibr 161 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3anim123d 1314 3orim123d 1315 hbbid 1568 spsbim 1836 moim 2083 moimv 2085 2euswapdc 2110 nelcon3d 2446 ralim 2529 ralimdaa 2536 ralimdv2 2540 rexim 2564 reximdv2 2569 rmoim 2931 ssel 3141 sstr2 3154 ssrexf 3209 ssrmof 3210 sscon 3261 ssdif 3262 unss1 3296 ssrin 3352 prel12 3756 uniss 3815 ssuni 3816 intss 3850 intssunim 3851 iunss1 3882 iinss1 3883 ss2iun 3886 disjss2 3967 disjss1 3970 ssbrd 4030 sspwb 4199 poss 4281 pofun 4295 soss 4297 sess1 4320 sess2 4321 ordwe 4558 wessep 4560 peano2 4577 finds 4582 finds2 4583 relss 4696 ssrel 4697 ssrel2 4699 ssrelrel 4709 xpsspw 4721 relop 4759 cnvss 4782 dmss 4808 dmcosseq 4880 funss 5215 imadif 5276 imain 5278 fss 5357 fun 5368 brprcneu 5487 isores3 5792 isopolem 5799 isosolem 5801 tposfn2 6243 tposfo2 6244 tposf1o2 6247 smores 6269 tfr1onlemaccex 6325 tfrcllemaccex 6338 iinerm 6583 xpdom2 6807 ssenen 6827 exmidpw 6884 exmidpweq 6885 nnnninfeq2 7103 recexprlemlol 7581 recexprlemupu 7583 axpre-ltwlin 7838 axpre-apti 7840 nnindnn 7848 nnind 8887 uzind 9316 hashfacen 10764 cau3lem 11071 tgcl 12823 epttop 12849 txcnp 13030 |
Copyright terms: Public domain | W3C validator |