Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3imtr4g | GIF version |
Description: More general version of 3imtr4i 200. Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
Ref | Expression |
---|---|
3imtr4g.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3imtr4g.2 | ⊢ (𝜃 ↔ 𝜓) |
3imtr4g.3 | ⊢ (𝜏 ↔ 𝜒) |
Ref | Expression |
---|---|
3imtr4g | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr4g.2 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
2 | 3imtr4g.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | syl5bi 151 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) |
4 | 3imtr4g.3 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
5 | 3, 4 | syl6ibr 161 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3anim123d 1309 3orim123d 1310 hbbid 1563 spsbim 1831 moim 2078 moimv 2080 2euswapdc 2105 nelcon3d 2442 ralim 2525 ralimdaa 2532 ralimdv2 2536 rexim 2560 reximdv2 2565 rmoim 2927 ssel 3136 sstr2 3149 ssrexf 3204 ssrmof 3205 sscon 3256 ssdif 3257 unss1 3291 ssrin 3347 prel12 3751 uniss 3810 ssuni 3811 intss 3845 intssunim 3846 iunss1 3877 iinss1 3878 ss2iun 3881 disjss2 3962 disjss1 3965 ssbrd 4025 sspwb 4194 poss 4276 pofun 4290 soss 4292 sess1 4315 sess2 4316 ordwe 4553 wessep 4555 peano2 4572 finds 4577 finds2 4578 relss 4691 ssrel 4692 ssrel2 4694 ssrelrel 4704 xpsspw 4716 relop 4754 cnvss 4777 dmss 4803 dmcosseq 4875 funss 5207 imadif 5268 imain 5270 fss 5349 fun 5360 brprcneu 5479 isores3 5783 isopolem 5790 isosolem 5792 tposfn2 6234 tposfo2 6235 tposf1o2 6238 smores 6260 tfr1onlemaccex 6316 tfrcllemaccex 6329 iinerm 6573 xpdom2 6797 ssenen 6817 exmidpw 6874 exmidpweq 6875 nnnninfeq2 7093 recexprlemlol 7567 recexprlemupu 7569 axpre-ltwlin 7824 axpre-apti 7826 nnindnn 7834 nnind 8873 uzind 9302 hashfacen 10749 cau3lem 11056 tgcl 12704 epttop 12730 txcnp 12911 |
Copyright terms: Public domain | W3C validator |