| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imtr4g | GIF version | ||
| Description: More general version of 3imtr4i 201. Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| 3imtr4g.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3imtr4g.2 | ⊢ (𝜃 ↔ 𝜓) |
| 3imtr4g.3 | ⊢ (𝜏 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| 3imtr4g | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr4g.2 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
| 2 | 3imtr4g.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | biimtrid 152 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) |
| 4 | 3imtr4g.3 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
| 5 | 3, 4 | imbitrrdi 162 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3anim123d 1332 3orim123d 1333 hbbid 1598 spsbim 1866 moim 2118 moimv 2120 2euswapdc 2145 nelcon3d 2482 ralim 2565 ralimdaa 2572 ralimdv2 2576 rexim 2600 reximdv2 2605 rmoim 2974 ssel 3187 sstr2 3200 ssrexf 3255 ssrmof 3256 sscon 3307 ssdif 3308 unss1 3342 ssrin 3398 prel12 3812 uniss 3871 ssuni 3872 intss 3906 intssunim 3907 iunss1 3938 iinss1 3939 ss2iun 3942 disjss2 4024 disjss1 4027 ssbrd 4087 sspwb 4260 poss 4345 pofun 4359 soss 4361 sess1 4384 sess2 4385 ordwe 4624 wessep 4626 peano2 4643 finds 4648 finds2 4649 relss 4762 ssrel 4763 ssrel2 4765 ssrelrel 4775 xpsspw 4787 relop 4828 cnvss 4851 dmss 4877 dmcosseq 4950 funss 5290 imadif 5354 imain 5356 fss 5437 fun 5448 brprcneu 5569 isores3 5884 isopolem 5891 isosolem 5893 tposfn2 6352 tposfo2 6353 tposf1o2 6356 smores 6378 tfr1onlemaccex 6434 tfrcllemaccex 6447 iinerm 6694 xpdom2 6926 ssenen 6948 exmidpw 7005 exmidpweq 7006 nnnninfeq2 7231 recexprlemlol 7739 recexprlemupu 7741 axpre-ltwlin 7996 axpre-apti 7998 nnindnn 8006 nnind 9052 uzind 9484 hashfacen 10981 cau3lem 11425 tgcl 14536 epttop 14562 txcnp 14743 plycj 15233 gausslemma2dlem0i 15534 gausslemma2dlem1a 15535 nnnninfex 15959 |
| Copyright terms: Public domain | W3C validator |