Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3imtr4g | GIF version |
Description: More general version of 3imtr4i 200. Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
Ref | Expression |
---|---|
3imtr4g.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3imtr4g.2 | ⊢ (𝜃 ↔ 𝜓) |
3imtr4g.3 | ⊢ (𝜏 ↔ 𝜒) |
Ref | Expression |
---|---|
3imtr4g | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr4g.2 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
2 | 3imtr4g.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | syl5bi 151 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) |
4 | 3imtr4g.3 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
5 | 3, 4 | syl6ibr 161 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3anim123d 1314 3orim123d 1315 hbbid 1568 spsbim 1836 moim 2083 moimv 2085 2euswapdc 2110 nelcon3d 2446 ralim 2529 ralimdaa 2536 ralimdv2 2540 rexim 2564 reximdv2 2569 rmoim 2931 ssel 3141 sstr2 3154 ssrexf 3209 ssrmof 3210 sscon 3261 ssdif 3262 unss1 3296 ssrin 3352 prel12 3758 uniss 3817 ssuni 3818 intss 3852 intssunim 3853 iunss1 3884 iinss1 3885 ss2iun 3888 disjss2 3969 disjss1 3972 ssbrd 4032 sspwb 4201 poss 4283 pofun 4297 soss 4299 sess1 4322 sess2 4323 ordwe 4560 wessep 4562 peano2 4579 finds 4584 finds2 4585 relss 4698 ssrel 4699 ssrel2 4701 ssrelrel 4711 xpsspw 4723 relop 4761 cnvss 4784 dmss 4810 dmcosseq 4882 funss 5217 imadif 5278 imain 5280 fss 5359 fun 5370 brprcneu 5489 isores3 5794 isopolem 5801 isosolem 5803 tposfn2 6245 tposfo2 6246 tposf1o2 6249 smores 6271 tfr1onlemaccex 6327 tfrcllemaccex 6340 iinerm 6585 xpdom2 6809 ssenen 6829 exmidpw 6886 exmidpweq 6887 nnnninfeq2 7105 recexprlemlol 7588 recexprlemupu 7590 axpre-ltwlin 7845 axpre-apti 7847 nnindnn 7855 nnind 8894 uzind 9323 hashfacen 10771 cau3lem 11078 tgcl 12858 epttop 12884 txcnp 13065 |
Copyright terms: Public domain | W3C validator |