| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imtr4g | GIF version | ||
| Description: More general version of 3imtr4i 201. Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| 3imtr4g.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3imtr4g.2 | ⊢ (𝜃 ↔ 𝜓) |
| 3imtr4g.3 | ⊢ (𝜏 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| 3imtr4g | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr4g.2 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
| 2 | 3imtr4g.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | biimtrid 152 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) |
| 4 | 3imtr4g.3 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
| 5 | 3, 4 | imbitrrdi 162 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3anim123d 1330 3orim123d 1331 hbbid 1589 spsbim 1857 moim 2109 moimv 2111 2euswapdc 2136 nelcon3d 2473 ralim 2556 ralimdaa 2563 ralimdv2 2567 rexim 2591 reximdv2 2596 rmoim 2965 ssel 3177 sstr2 3190 ssrexf 3245 ssrmof 3246 sscon 3297 ssdif 3298 unss1 3332 ssrin 3388 prel12 3801 uniss 3860 ssuni 3861 intss 3895 intssunim 3896 iunss1 3927 iinss1 3928 ss2iun 3931 disjss2 4013 disjss1 4016 ssbrd 4076 sspwb 4249 poss 4333 pofun 4347 soss 4349 sess1 4372 sess2 4373 ordwe 4612 wessep 4614 peano2 4631 finds 4636 finds2 4637 relss 4750 ssrel 4751 ssrel2 4753 ssrelrel 4763 xpsspw 4775 relop 4816 cnvss 4839 dmss 4865 dmcosseq 4937 funss 5277 imadif 5338 imain 5340 fss 5419 fun 5430 brprcneu 5551 isores3 5862 isopolem 5869 isosolem 5871 tposfn2 6324 tposfo2 6325 tposf1o2 6328 smores 6350 tfr1onlemaccex 6406 tfrcllemaccex 6419 iinerm 6666 xpdom2 6890 ssenen 6912 exmidpw 6969 exmidpweq 6970 nnnninfeq2 7195 recexprlemlol 7693 recexprlemupu 7695 axpre-ltwlin 7950 axpre-apti 7952 nnindnn 7960 nnind 9006 uzind 9437 hashfacen 10928 cau3lem 11279 tgcl 14300 epttop 14326 txcnp 14507 plycj 14997 gausslemma2dlem0i 15298 gausslemma2dlem1a 15299 |
| Copyright terms: Public domain | W3C validator |