| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imtr4g | GIF version | ||
| Description: More general version of 3imtr4i 201. Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| 3imtr4g.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3imtr4g.2 | ⊢ (𝜃 ↔ 𝜓) |
| 3imtr4g.3 | ⊢ (𝜏 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| 3imtr4g | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr4g.2 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
| 2 | 3imtr4g.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | biimtrid 152 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) |
| 4 | 3imtr4g.3 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
| 5 | 3, 4 | imbitrrdi 162 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3anim123d 1330 3orim123d 1331 hbbid 1589 spsbim 1857 moim 2109 moimv 2111 2euswapdc 2136 nelcon3d 2473 ralim 2556 ralimdaa 2563 ralimdv2 2567 rexim 2591 reximdv2 2596 rmoim 2965 ssel 3178 sstr2 3191 ssrexf 3246 ssrmof 3247 sscon 3298 ssdif 3299 unss1 3333 ssrin 3389 prel12 3802 uniss 3861 ssuni 3862 intss 3896 intssunim 3897 iunss1 3928 iinss1 3929 ss2iun 3932 disjss2 4014 disjss1 4017 ssbrd 4077 sspwb 4250 poss 4334 pofun 4348 soss 4350 sess1 4373 sess2 4374 ordwe 4613 wessep 4615 peano2 4632 finds 4637 finds2 4638 relss 4751 ssrel 4752 ssrel2 4754 ssrelrel 4764 xpsspw 4776 relop 4817 cnvss 4840 dmss 4866 dmcosseq 4938 funss 5278 imadif 5339 imain 5341 fss 5422 fun 5433 brprcneu 5554 isores3 5865 isopolem 5872 isosolem 5874 tposfn2 6333 tposfo2 6334 tposf1o2 6337 smores 6359 tfr1onlemaccex 6415 tfrcllemaccex 6428 iinerm 6675 xpdom2 6899 ssenen 6921 exmidpw 6978 exmidpweq 6979 nnnninfeq2 7204 recexprlemlol 7710 recexprlemupu 7712 axpre-ltwlin 7967 axpre-apti 7969 nnindnn 7977 nnind 9023 uzind 9454 hashfacen 10945 cau3lem 11296 tgcl 14384 epttop 14410 txcnp 14591 plycj 15081 gausslemma2dlem0i 15382 gausslemma2dlem1a 15383 |
| Copyright terms: Public domain | W3C validator |