![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3imtr4g | GIF version |
Description: More general version of 3imtr4i 201. Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
Ref | Expression |
---|---|
3imtr4g.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3imtr4g.2 | ⊢ (𝜃 ↔ 𝜓) |
3imtr4g.3 | ⊢ (𝜏 ↔ 𝜒) |
Ref | Expression |
---|---|
3imtr4g | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr4g.2 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
2 | 3imtr4g.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | biimtrid 152 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) |
4 | 3imtr4g.3 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
5 | 3, 4 | imbitrrdi 162 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3anim123d 1330 3orim123d 1331 hbbid 1586 spsbim 1854 moim 2106 moimv 2108 2euswapdc 2133 nelcon3d 2470 ralim 2553 ralimdaa 2560 ralimdv2 2564 rexim 2588 reximdv2 2593 rmoim 2961 ssel 3173 sstr2 3186 ssrexf 3241 ssrmof 3242 sscon 3293 ssdif 3294 unss1 3328 ssrin 3384 prel12 3797 uniss 3856 ssuni 3857 intss 3891 intssunim 3892 iunss1 3923 iinss1 3924 ss2iun 3927 disjss2 4009 disjss1 4012 ssbrd 4072 sspwb 4245 poss 4329 pofun 4343 soss 4345 sess1 4368 sess2 4369 ordwe 4608 wessep 4610 peano2 4627 finds 4632 finds2 4633 relss 4746 ssrel 4747 ssrel2 4749 ssrelrel 4759 xpsspw 4771 relop 4812 cnvss 4835 dmss 4861 dmcosseq 4933 funss 5273 imadif 5334 imain 5336 fss 5415 fun 5426 brprcneu 5547 isores3 5858 isopolem 5865 isosolem 5867 tposfn2 6319 tposfo2 6320 tposf1o2 6323 smores 6345 tfr1onlemaccex 6401 tfrcllemaccex 6414 iinerm 6661 xpdom2 6885 ssenen 6907 exmidpw 6964 exmidpweq 6965 nnnninfeq2 7188 recexprlemlol 7686 recexprlemupu 7688 axpre-ltwlin 7943 axpre-apti 7945 nnindnn 7953 nnind 8998 uzind 9428 hashfacen 10907 cau3lem 11258 tgcl 14232 epttop 14258 txcnp 14439 gausslemma2dlem0i 15173 gausslemma2dlem1a 15174 |
Copyright terms: Public domain | W3C validator |