![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3imtr4g | GIF version |
Description: More general version of 3imtr4i 201. Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
Ref | Expression |
---|---|
3imtr4g.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3imtr4g.2 | ⊢ (𝜃 ↔ 𝜓) |
3imtr4g.3 | ⊢ (𝜏 ↔ 𝜒) |
Ref | Expression |
---|---|
3imtr4g | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr4g.2 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
2 | 3imtr4g.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | biimtrid 152 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) |
4 | 3imtr4g.3 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
5 | 3, 4 | imbitrrdi 162 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3anim123d 1319 3orim123d 1320 hbbid 1575 spsbim 1843 moim 2090 moimv 2092 2euswapdc 2117 nelcon3d 2453 ralim 2536 ralimdaa 2543 ralimdv2 2547 rexim 2571 reximdv2 2576 rmoim 2939 ssel 3150 sstr2 3163 ssrexf 3218 ssrmof 3219 sscon 3270 ssdif 3271 unss1 3305 ssrin 3361 prel12 3772 uniss 3831 ssuni 3832 intss 3866 intssunim 3867 iunss1 3898 iinss1 3899 ss2iun 3902 disjss2 3984 disjss1 3987 ssbrd 4047 sspwb 4217 poss 4299 pofun 4313 soss 4315 sess1 4338 sess2 4339 ordwe 4576 wessep 4578 peano2 4595 finds 4600 finds2 4601 relss 4714 ssrel 4715 ssrel2 4717 ssrelrel 4727 xpsspw 4739 relop 4778 cnvss 4801 dmss 4827 dmcosseq 4899 funss 5236 imadif 5297 imain 5299 fss 5378 fun 5389 brprcneu 5509 isores3 5816 isopolem 5823 isosolem 5825 tposfn2 6267 tposfo2 6268 tposf1o2 6271 smores 6293 tfr1onlemaccex 6349 tfrcllemaccex 6362 iinerm 6607 xpdom2 6831 ssenen 6851 exmidpw 6908 exmidpweq 6909 nnnninfeq2 7127 recexprlemlol 7625 recexprlemupu 7627 axpre-ltwlin 7882 axpre-apti 7884 nnindnn 7892 nnind 8935 uzind 9364 hashfacen 10816 cau3lem 11123 tgcl 13567 epttop 13593 txcnp 13774 |
Copyright terms: Public domain | W3C validator |