ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4p1e5 GIF version

Theorem 4p1e5 9144
Description: 4 + 1 = 5. (Contributed by Mario Carneiro, 18-Apr-2015.)
Assertion
Ref Expression
4p1e5 (4 + 1) = 5

Proof of Theorem 4p1e5
StepHypRef Expression
1 df-5 9069 . 2 5 = (4 + 1)
21eqcomi 2200 1 (4 + 1) = 5
Colors of variables: wff set class
Syntax hints:   = wceq 1364  (class class class)co 5925  1c1 7897   + caddc 7899  4c4 9060  5c5 9061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-5 9069
This theorem is referenced by:  8t7e56  9593  9t6e54  9599  2exp16  12631  ex-exp  15457  ex-fac  15458
  Copyright terms: Public domain W3C validator