ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4p1e5 GIF version

Theorem 4p1e5 9203
Description: 4 + 1 = 5. (Contributed by Mario Carneiro, 18-Apr-2015.)
Assertion
Ref Expression
4p1e5 (4 + 1) = 5

Proof of Theorem 4p1e5
StepHypRef Expression
1 df-5 9128 . 2 5 = (4 + 1)
21eqcomi 2210 1 (4 + 1) = 5
Colors of variables: wff set class
Syntax hints:   = wceq 1373  (class class class)co 5962  1c1 7956   + caddc 7958  4c4 9119  5c5 9120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-cleq 2199  df-5 9128
This theorem is referenced by:  8t7e56  9653  9t6e54  9659  2exp16  12845  ex-exp  15833  ex-fac  15834
  Copyright terms: Public domain W3C validator