ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4p1e5 GIF version

Theorem 4p1e5 8993
Description: 4 + 1 = 5. (Contributed by Mario Carneiro, 18-Apr-2015.)
Assertion
Ref Expression
4p1e5 (4 + 1) = 5

Proof of Theorem 4p1e5
StepHypRef Expression
1 df-5 8919 . 2 5 = (4 + 1)
21eqcomi 2169 1 (4 + 1) = 5
Colors of variables: wff set class
Syntax hints:   = wceq 1343  (class class class)co 5842  1c1 7754   + caddc 7756  4c4 8910  5c5 8911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158  df-5 8919
This theorem is referenced by:  8t7e56  9441  9t6e54  9447  ex-exp  13608  ex-fac  13609
  Copyright terms: Public domain W3C validator