ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4p1e5 GIF version

Theorem 4p1e5 9026
Description: 4 + 1 = 5. (Contributed by Mario Carneiro, 18-Apr-2015.)
Assertion
Ref Expression
4p1e5 (4 + 1) = 5

Proof of Theorem 4p1e5
StepHypRef Expression
1 df-5 8952 . 2 5 = (4 + 1)
21eqcomi 2179 1 (4 + 1) = 5
Colors of variables: wff set class
Syntax hints:   = wceq 1353  (class class class)co 5865  1c1 7787   + caddc 7789  4c4 8943  5c5 8944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-gen 1447  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-cleq 2168  df-5 8952
This theorem is referenced by:  8t7e56  9474  9t6e54  9480  ex-exp  14019  ex-fac  14020
  Copyright terms: Public domain W3C validator