| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ex-exp | GIF version | ||
| Description: Example for df-exp 10728. (Contributed by AV, 4-Sep-2021.) |
| Ref | Expression |
|---|---|
| ex-exp | ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 9140 | . . . 4 ⊢ 5 = (4 + 1) | |
| 2 | 1 | oveq1i 5984 | . . 3 ⊢ (5↑2) = ((4 + 1)↑2) |
| 3 | 4cn 9156 | . . . . 5 ⊢ 4 ∈ ℂ | |
| 4 | binom21 10841 | . . . . 5 ⊢ (4 ∈ ℂ → ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1)) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1) |
| 6 | 2nn0 9354 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 7 | 4nn0 9356 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
| 8 | 4p1e5 9215 | . . . . 5 ⊢ (4 + 1) = 5 | |
| 9 | sq4e2t8 10826 | . . . . . . . 8 ⊢ (4↑2) = (2 · 8) | |
| 10 | 8cn 9164 | . . . . . . . . 9 ⊢ 8 ∈ ℂ | |
| 11 | 2cn 9149 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
| 12 | 8t2e16 9660 | . . . . . . . . 9 ⊢ (8 · 2) = ;16 | |
| 13 | 10, 11, 12 | mulcomli 8121 | . . . . . . . 8 ⊢ (2 · 8) = ;16 |
| 14 | 9, 13 | eqtri 2230 | . . . . . . 7 ⊢ (4↑2) = ;16 |
| 15 | 4t2e8 9237 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
| 16 | 3, 11, 15 | mulcomli 8121 | . . . . . . 7 ⊢ (2 · 4) = 8 |
| 17 | 14, 16 | oveq12i 5986 | . . . . . 6 ⊢ ((4↑2) + (2 · 4)) = (;16 + 8) |
| 18 | 1nn0 9353 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 19 | 6nn0 9358 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
| 20 | 8nn0 9360 | . . . . . . 7 ⊢ 8 ∈ ℕ0 | |
| 21 | eqid 2209 | . . . . . . 7 ⊢ ;16 = ;16 | |
| 22 | 1p1e2 9195 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
| 23 | 6cn 9160 | . . . . . . . 8 ⊢ 6 ∈ ℂ | |
| 24 | 8p6e14 9629 | . . . . . . . 8 ⊢ (8 + 6) = ;14 | |
| 25 | 10, 23, 24 | addcomli 8259 | . . . . . . 7 ⊢ (6 + 8) = ;14 |
| 26 | 18, 19, 20, 21, 22, 7, 25 | decaddci 9606 | . . . . . 6 ⊢ (;16 + 8) = ;24 |
| 27 | 17, 26 | eqtri 2230 | . . . . 5 ⊢ ((4↑2) + (2 · 4)) = ;24 |
| 28 | 6, 7, 8, 27 | decsuc 9576 | . . . 4 ⊢ (((4↑2) + (2 · 4)) + 1) = ;25 |
| 29 | 5, 28 | eqtri 2230 | . . 3 ⊢ ((4 + 1)↑2) = ;25 |
| 30 | 2, 29 | eqtri 2230 | . 2 ⊢ (5↑2) = ;25 |
| 31 | 3cn 9153 | . . . . 5 ⊢ 3 ∈ ℂ | |
| 32 | 31 | negcli 8382 | . . . 4 ⊢ -3 ∈ ℂ |
| 33 | 3ap0 9174 | . . . . 5 ⊢ 3 # 0 | |
| 34 | negap0 8745 | . . . . . 6 ⊢ (3 ∈ ℂ → (3 # 0 ↔ -3 # 0)) | |
| 35 | 31, 34 | ax-mp 5 | . . . . 5 ⊢ (3 # 0 ↔ -3 # 0) |
| 36 | 33, 35 | mpbi 145 | . . . 4 ⊢ -3 # 0 |
| 37 | expnegap0 10736 | . . . 4 ⊢ ((-3 ∈ ℂ ∧ -3 # 0 ∧ 2 ∈ ℕ0) → (-3↑-2) = (1 / (-3↑2))) | |
| 38 | 32, 36, 6, 37 | mp3an 1352 | . . 3 ⊢ (-3↑-2) = (1 / (-3↑2)) |
| 39 | sqneg 10787 | . . . . . 6 ⊢ (3 ∈ ℂ → (-3↑2) = (3↑2)) | |
| 40 | 31, 39 | ax-mp 5 | . . . . 5 ⊢ (-3↑2) = (3↑2) |
| 41 | sq3 10825 | . . . . 5 ⊢ (3↑2) = 9 | |
| 42 | 40, 41 | eqtri 2230 | . . . 4 ⊢ (-3↑2) = 9 |
| 43 | 42 | oveq2i 5985 | . . 3 ⊢ (1 / (-3↑2)) = (1 / 9) |
| 44 | 38, 43 | eqtri 2230 | . 2 ⊢ (-3↑-2) = (1 / 9) |
| 45 | 30, 44 | pm3.2i 272 | 1 ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1375 ∈ wcel 2180 class class class wbr 4062 (class class class)co 5974 ℂcc 7965 0cc0 7967 1c1 7968 + caddc 7970 · cmul 7972 -cneg 8286 # cap 8696 / cdiv 8787 2c2 9129 3c3 9130 4c4 9131 5c5 9132 6c6 9133 8c8 9135 9c9 9136 ℕ0cn0 9337 ;cdc 9546 ↑cexp 10727 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-frec 6507 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-z 9415 df-dec 9547 df-uz 9691 df-seqfrec 10637 df-exp 10728 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |