Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ex-exp | GIF version |
Description: Example for df-exp 10397. (Contributed by AV, 4-Sep-2021.) |
Ref | Expression |
---|---|
ex-exp | ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 8874 | . . . 4 ⊢ 5 = (4 + 1) | |
2 | 1 | oveq1i 5824 | . . 3 ⊢ (5↑2) = ((4 + 1)↑2) |
3 | 4cn 8890 | . . . . 5 ⊢ 4 ∈ ℂ | |
4 | binom21 10508 | . . . . 5 ⊢ (4 ∈ ℂ → ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1)) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1) |
6 | 2nn0 9086 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
7 | 4nn0 9088 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
8 | 4p1e5 8948 | . . . . 5 ⊢ (4 + 1) = 5 | |
9 | sq4e2t8 10494 | . . . . . . . 8 ⊢ (4↑2) = (2 · 8) | |
10 | 8cn 8898 | . . . . . . . . 9 ⊢ 8 ∈ ℂ | |
11 | 2cn 8883 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
12 | 8t2e16 9388 | . . . . . . . . 9 ⊢ (8 · 2) = ;16 | |
13 | 10, 11, 12 | mulcomli 7864 | . . . . . . . 8 ⊢ (2 · 8) = ;16 |
14 | 9, 13 | eqtri 2175 | . . . . . . 7 ⊢ (4↑2) = ;16 |
15 | 4t2e8 8970 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
16 | 3, 11, 15 | mulcomli 7864 | . . . . . . 7 ⊢ (2 · 4) = 8 |
17 | 14, 16 | oveq12i 5826 | . . . . . 6 ⊢ ((4↑2) + (2 · 4)) = (;16 + 8) |
18 | 1nn0 9085 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
19 | 6nn0 9090 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
20 | 8nn0 9092 | . . . . . . 7 ⊢ 8 ∈ ℕ0 | |
21 | eqid 2154 | . . . . . . 7 ⊢ ;16 = ;16 | |
22 | 1p1e2 8929 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
23 | 6cn 8894 | . . . . . . . 8 ⊢ 6 ∈ ℂ | |
24 | 8p6e14 9357 | . . . . . . . 8 ⊢ (8 + 6) = ;14 | |
25 | 10, 23, 24 | addcomli 7999 | . . . . . . 7 ⊢ (6 + 8) = ;14 |
26 | 18, 19, 20, 21, 22, 7, 25 | decaddci 9334 | . . . . . 6 ⊢ (;16 + 8) = ;24 |
27 | 17, 26 | eqtri 2175 | . . . . 5 ⊢ ((4↑2) + (2 · 4)) = ;24 |
28 | 6, 7, 8, 27 | decsuc 9304 | . . . 4 ⊢ (((4↑2) + (2 · 4)) + 1) = ;25 |
29 | 5, 28 | eqtri 2175 | . . 3 ⊢ ((4 + 1)↑2) = ;25 |
30 | 2, 29 | eqtri 2175 | . 2 ⊢ (5↑2) = ;25 |
31 | 3cn 8887 | . . . . 5 ⊢ 3 ∈ ℂ | |
32 | 31 | negcli 8122 | . . . 4 ⊢ -3 ∈ ℂ |
33 | 3ap0 8908 | . . . . 5 ⊢ 3 # 0 | |
34 | negap0 8484 | . . . . . 6 ⊢ (3 ∈ ℂ → (3 # 0 ↔ -3 # 0)) | |
35 | 31, 34 | ax-mp 5 | . . . . 5 ⊢ (3 # 0 ↔ -3 # 0) |
36 | 33, 35 | mpbi 144 | . . . 4 ⊢ -3 # 0 |
37 | expnegap0 10405 | . . . 4 ⊢ ((-3 ∈ ℂ ∧ -3 # 0 ∧ 2 ∈ ℕ0) → (-3↑-2) = (1 / (-3↑2))) | |
38 | 32, 36, 6, 37 | mp3an 1316 | . . 3 ⊢ (-3↑-2) = (1 / (-3↑2)) |
39 | sqneg 10456 | . . . . . 6 ⊢ (3 ∈ ℂ → (-3↑2) = (3↑2)) | |
40 | 31, 39 | ax-mp 5 | . . . . 5 ⊢ (-3↑2) = (3↑2) |
41 | sq3 10493 | . . . . 5 ⊢ (3↑2) = 9 | |
42 | 40, 41 | eqtri 2175 | . . . 4 ⊢ (-3↑2) = 9 |
43 | 42 | oveq2i 5825 | . . 3 ⊢ (1 / (-3↑2)) = (1 / 9) |
44 | 38, 43 | eqtri 2175 | . 2 ⊢ (-3↑-2) = (1 / 9) |
45 | 30, 44 | pm3.2i 270 | 1 ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1332 ∈ wcel 2125 class class class wbr 3961 (class class class)co 5814 ℂcc 7709 0cc0 7711 1c1 7712 + caddc 7714 · cmul 7716 -cneg 8026 # cap 8435 / cdiv 8524 2c2 8863 3c3 8864 4c4 8865 5c5 8866 6c6 8867 8c8 8869 9c9 8870 ℕ0cn0 9069 ;cdc 9274 ↑cexp 10396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-iinf 4541 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-mulrcl 7810 ax-addcom 7811 ax-mulcom 7812 ax-addass 7813 ax-mulass 7814 ax-distr 7815 ax-i2m1 7816 ax-0lt1 7817 ax-1rid 7818 ax-0id 7819 ax-rnegex 7820 ax-precex 7821 ax-cnre 7822 ax-pre-ltirr 7823 ax-pre-ltwlin 7824 ax-pre-lttrn 7825 ax-pre-apti 7826 ax-pre-ltadd 7827 ax-pre-mulgt0 7828 ax-pre-mulext 7829 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-reu 2439 df-rmo 2440 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-if 3502 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-tr 4059 df-id 4248 df-po 4251 df-iso 4252 df-iord 4321 df-on 4323 df-ilim 4324 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1st 6078 df-2nd 6079 df-recs 6242 df-frec 6328 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-sub 8027 df-neg 8028 df-reap 8429 df-ap 8436 df-div 8525 df-inn 8813 df-2 8871 df-3 8872 df-4 8873 df-5 8874 df-6 8875 df-7 8876 df-8 8877 df-9 8878 df-n0 9070 df-z 9147 df-dec 9275 df-uz 9419 df-seqfrec 10323 df-exp 10397 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |