![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ex-exp | GIF version |
Description: Example for df-exp 9943. (Contributed by AV, 4-Sep-2021.) |
Ref | Expression |
---|---|
ex-exp | ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 8474 | . . . 4 ⊢ 5 = (4 + 1) | |
2 | 1 | oveq1i 5654 | . . 3 ⊢ (5↑2) = ((4 + 1)↑2) |
3 | 4cn 8490 | . . . . 5 ⊢ 4 ∈ ℂ | |
4 | binom21 10054 | . . . . 5 ⊢ (4 ∈ ℂ → ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1)) | |
5 | 3, 4 | ax-mp 7 | . . . 4 ⊢ ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1) |
6 | 2nn0 8680 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
7 | 4nn0 8682 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
8 | 4p1e5 8542 | . . . . 5 ⊢ (4 + 1) = 5 | |
9 | sq4e2t8 10040 | . . . . . . . 8 ⊢ (4↑2) = (2 · 8) | |
10 | 8cn 8498 | . . . . . . . . 9 ⊢ 8 ∈ ℂ | |
11 | 2cn 8483 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
12 | 8t2e16 8981 | . . . . . . . . 9 ⊢ (8 · 2) = ;16 | |
13 | 10, 11, 12 | mulcomli 7485 | . . . . . . . 8 ⊢ (2 · 8) = ;16 |
14 | 9, 13 | eqtri 2108 | . . . . . . 7 ⊢ (4↑2) = ;16 |
15 | 4t2e8 8564 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
16 | 3, 11, 15 | mulcomli 7485 | . . . . . . 7 ⊢ (2 · 4) = 8 |
17 | 14, 16 | oveq12i 5656 | . . . . . 6 ⊢ ((4↑2) + (2 · 4)) = (;16 + 8) |
18 | 1nn0 8679 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
19 | 6nn0 8684 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
20 | 8nn0 8686 | . . . . . . 7 ⊢ 8 ∈ ℕ0 | |
21 | eqid 2088 | . . . . . . 7 ⊢ ;16 = ;16 | |
22 | 1p1e2 8529 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
23 | 6cn 8494 | . . . . . . . 8 ⊢ 6 ∈ ℂ | |
24 | 8p6e14 8950 | . . . . . . . 8 ⊢ (8 + 6) = ;14 | |
25 | 10, 23, 24 | addcomli 7617 | . . . . . . 7 ⊢ (6 + 8) = ;14 |
26 | 18, 19, 20, 21, 22, 7, 25 | decaddci 8927 | . . . . . 6 ⊢ (;16 + 8) = ;24 |
27 | 17, 26 | eqtri 2108 | . . . . 5 ⊢ ((4↑2) + (2 · 4)) = ;24 |
28 | 6, 7, 8, 27 | decsuc 8897 | . . . 4 ⊢ (((4↑2) + (2 · 4)) + 1) = ;25 |
29 | 5, 28 | eqtri 2108 | . . 3 ⊢ ((4 + 1)↑2) = ;25 |
30 | 2, 29 | eqtri 2108 | . 2 ⊢ (5↑2) = ;25 |
31 | 3cn 8487 | . . . . 5 ⊢ 3 ∈ ℂ | |
32 | 31 | negcli 7740 | . . . 4 ⊢ -3 ∈ ℂ |
33 | 3ap0 8508 | . . . . 5 ⊢ 3 # 0 | |
34 | negap0 8096 | . . . . . 6 ⊢ (3 ∈ ℂ → (3 # 0 ↔ -3 # 0)) | |
35 | 31, 34 | ax-mp 7 | . . . . 5 ⊢ (3 # 0 ↔ -3 # 0) |
36 | 33, 35 | mpbi 143 | . . . 4 ⊢ -3 # 0 |
37 | expnegap0 9951 | . . . 4 ⊢ ((-3 ∈ ℂ ∧ -3 # 0 ∧ 2 ∈ ℕ0) → (-3↑-2) = (1 / (-3↑2))) | |
38 | 32, 36, 6, 37 | mp3an 1273 | . . 3 ⊢ (-3↑-2) = (1 / (-3↑2)) |
39 | sqneg 10002 | . . . . . 6 ⊢ (3 ∈ ℂ → (-3↑2) = (3↑2)) | |
40 | 31, 39 | ax-mp 7 | . . . . 5 ⊢ (-3↑2) = (3↑2) |
41 | sq3 10039 | . . . . 5 ⊢ (3↑2) = 9 | |
42 | 40, 41 | eqtri 2108 | . . . 4 ⊢ (-3↑2) = 9 |
43 | 42 | oveq2i 5655 | . . 3 ⊢ (1 / (-3↑2)) = (1 / 9) |
44 | 38, 43 | eqtri 2108 | . 2 ⊢ (-3↑-2) = (1 / 9) |
45 | 30, 44 | pm3.2i 266 | 1 ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 ↔ wb 103 = wceq 1289 ∈ wcel 1438 class class class wbr 3843 (class class class)co 5644 ℂcc 7338 0cc0 7340 1c1 7341 + caddc 7343 · cmul 7345 -cneg 7644 # cap 8048 / cdiv 8129 2c2 8463 3c3 8464 4c4 8465 5c5 8466 6c6 8467 8c8 8469 9c9 8470 ℕ0cn0 8663 ;cdc 8867 ↑cexp 9942 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-coll 3952 ax-sep 3955 ax-nul 3963 ax-pow 4007 ax-pr 4034 ax-un 4258 ax-setind 4351 ax-iinf 4401 ax-cnex 7426 ax-resscn 7427 ax-1cn 7428 ax-1re 7429 ax-icn 7430 ax-addcl 7431 ax-addrcl 7432 ax-mulcl 7433 ax-mulrcl 7434 ax-addcom 7435 ax-mulcom 7436 ax-addass 7437 ax-mulass 7438 ax-distr 7439 ax-i2m1 7440 ax-0lt1 7441 ax-1rid 7442 ax-0id 7443 ax-rnegex 7444 ax-precex 7445 ax-cnre 7446 ax-pre-ltirr 7447 ax-pre-ltwlin 7448 ax-pre-lttrn 7449 ax-pre-apti 7450 ax-pre-ltadd 7451 ax-pre-mulgt0 7452 ax-pre-mulext 7453 |
This theorem depends on definitions: df-bi 115 df-dc 781 df-3or 925 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-nel 2351 df-ral 2364 df-rex 2365 df-reu 2366 df-rmo 2367 df-rab 2368 df-v 2621 df-sbc 2841 df-csb 2934 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-nul 3287 df-if 3392 df-pw 3429 df-sn 3450 df-pr 3451 df-op 3453 df-uni 3652 df-int 3687 df-iun 3730 df-br 3844 df-opab 3898 df-mpt 3899 df-tr 3935 df-id 4118 df-po 4121 df-iso 4122 df-iord 4191 df-on 4193 df-ilim 4194 df-suc 4196 df-iom 4404 df-xp 4442 df-rel 4443 df-cnv 4444 df-co 4445 df-dm 4446 df-rn 4447 df-res 4448 df-ima 4449 df-iota 4975 df-fun 5012 df-fn 5013 df-f 5014 df-f1 5015 df-fo 5016 df-f1o 5017 df-fv 5018 df-riota 5600 df-ov 5647 df-oprab 5648 df-mpt2 5649 df-1st 5903 df-2nd 5904 df-recs 6062 df-frec 6148 df-pnf 7514 df-mnf 7515 df-xr 7516 df-ltxr 7517 df-le 7518 df-sub 7645 df-neg 7646 df-reap 8042 df-ap 8049 df-div 8130 df-inn 8413 df-2 8471 df-3 8472 df-4 8473 df-5 8474 df-6 8475 df-7 8476 df-8 8477 df-9 8478 df-n0 8664 df-z 8741 df-dec 8868 df-uz 9010 df-iseq 9841 df-seq3 9842 df-exp 9943 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |