![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ex-exp | GIF version |
Description: Example for df-exp 10534. (Contributed by AV, 4-Sep-2021.) |
Ref | Expression |
---|---|
ex-exp | ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 8995 | . . . 4 ⊢ 5 = (4 + 1) | |
2 | 1 | oveq1i 5898 | . . 3 ⊢ (5↑2) = ((4 + 1)↑2) |
3 | 4cn 9011 | . . . . 5 ⊢ 4 ∈ ℂ | |
4 | binom21 10647 | . . . . 5 ⊢ (4 ∈ ℂ → ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1)) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1) |
6 | 2nn0 9207 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
7 | 4nn0 9209 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
8 | 4p1e5 9069 | . . . . 5 ⊢ (4 + 1) = 5 | |
9 | sq4e2t8 10632 | . . . . . . . 8 ⊢ (4↑2) = (2 · 8) | |
10 | 8cn 9019 | . . . . . . . . 9 ⊢ 8 ∈ ℂ | |
11 | 2cn 9004 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
12 | 8t2e16 9512 | . . . . . . . . 9 ⊢ (8 · 2) = ;16 | |
13 | 10, 11, 12 | mulcomli 7978 | . . . . . . . 8 ⊢ (2 · 8) = ;16 |
14 | 9, 13 | eqtri 2208 | . . . . . . 7 ⊢ (4↑2) = ;16 |
15 | 4t2e8 9091 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
16 | 3, 11, 15 | mulcomli 7978 | . . . . . . 7 ⊢ (2 · 4) = 8 |
17 | 14, 16 | oveq12i 5900 | . . . . . 6 ⊢ ((4↑2) + (2 · 4)) = (;16 + 8) |
18 | 1nn0 9206 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
19 | 6nn0 9211 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
20 | 8nn0 9213 | . . . . . . 7 ⊢ 8 ∈ ℕ0 | |
21 | eqid 2187 | . . . . . . 7 ⊢ ;16 = ;16 | |
22 | 1p1e2 9050 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
23 | 6cn 9015 | . . . . . . . 8 ⊢ 6 ∈ ℂ | |
24 | 8p6e14 9481 | . . . . . . . 8 ⊢ (8 + 6) = ;14 | |
25 | 10, 23, 24 | addcomli 8116 | . . . . . . 7 ⊢ (6 + 8) = ;14 |
26 | 18, 19, 20, 21, 22, 7, 25 | decaddci 9458 | . . . . . 6 ⊢ (;16 + 8) = ;24 |
27 | 17, 26 | eqtri 2208 | . . . . 5 ⊢ ((4↑2) + (2 · 4)) = ;24 |
28 | 6, 7, 8, 27 | decsuc 9428 | . . . 4 ⊢ (((4↑2) + (2 · 4)) + 1) = ;25 |
29 | 5, 28 | eqtri 2208 | . . 3 ⊢ ((4 + 1)↑2) = ;25 |
30 | 2, 29 | eqtri 2208 | . 2 ⊢ (5↑2) = ;25 |
31 | 3cn 9008 | . . . . 5 ⊢ 3 ∈ ℂ | |
32 | 31 | negcli 8239 | . . . 4 ⊢ -3 ∈ ℂ |
33 | 3ap0 9029 | . . . . 5 ⊢ 3 # 0 | |
34 | negap0 8601 | . . . . . 6 ⊢ (3 ∈ ℂ → (3 # 0 ↔ -3 # 0)) | |
35 | 31, 34 | ax-mp 5 | . . . . 5 ⊢ (3 # 0 ↔ -3 # 0) |
36 | 33, 35 | mpbi 145 | . . . 4 ⊢ -3 # 0 |
37 | expnegap0 10542 | . . . 4 ⊢ ((-3 ∈ ℂ ∧ -3 # 0 ∧ 2 ∈ ℕ0) → (-3↑-2) = (1 / (-3↑2))) | |
38 | 32, 36, 6, 37 | mp3an 1347 | . . 3 ⊢ (-3↑-2) = (1 / (-3↑2)) |
39 | sqneg 10593 | . . . . . 6 ⊢ (3 ∈ ℂ → (-3↑2) = (3↑2)) | |
40 | 31, 39 | ax-mp 5 | . . . . 5 ⊢ (-3↑2) = (3↑2) |
41 | sq3 10631 | . . . . 5 ⊢ (3↑2) = 9 | |
42 | 40, 41 | eqtri 2208 | . . . 4 ⊢ (-3↑2) = 9 |
43 | 42 | oveq2i 5899 | . . 3 ⊢ (1 / (-3↑2)) = (1 / 9) |
44 | 38, 43 | eqtri 2208 | . 2 ⊢ (-3↑-2) = (1 / 9) |
45 | 30, 44 | pm3.2i 272 | 1 ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1363 ∈ wcel 2158 class class class wbr 4015 (class class class)co 5888 ℂcc 7823 0cc0 7825 1c1 7826 + caddc 7828 · cmul 7830 -cneg 8143 # cap 8552 / cdiv 8643 2c2 8984 3c3 8985 4c4 8986 5c5 8987 6c6 8988 8c8 8990 9c9 8991 ℕ0cn0 9190 ;cdc 9398 ↑cexp 10533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-mulrcl 7924 ax-addcom 7925 ax-mulcom 7926 ax-addass 7927 ax-mulass 7928 ax-distr 7929 ax-i2m1 7930 ax-0lt1 7931 ax-1rid 7932 ax-0id 7933 ax-rnegex 7934 ax-precex 7935 ax-cnre 7936 ax-pre-ltirr 7937 ax-pre-ltwlin 7938 ax-pre-lttrn 7939 ax-pre-apti 7940 ax-pre-ltadd 7941 ax-pre-mulgt0 7942 ax-pre-mulext 7943 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-if 3547 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-po 4308 df-iso 4309 df-iord 4378 df-on 4380 df-ilim 4381 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6155 df-2nd 6156 df-recs 6320 df-frec 6406 df-pnf 8008 df-mnf 8009 df-xr 8010 df-ltxr 8011 df-le 8012 df-sub 8144 df-neg 8145 df-reap 8546 df-ap 8553 df-div 8644 df-inn 8934 df-2 8992 df-3 8993 df-4 8994 df-5 8995 df-6 8996 df-7 8997 df-8 8998 df-9 8999 df-n0 9191 df-z 9268 df-dec 9399 df-uz 9543 df-seqfrec 10460 df-exp 10534 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |