![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ex-exp | GIF version |
Description: Example for df-exp 10506. (Contributed by AV, 4-Sep-2021.) |
Ref | Expression |
---|---|
ex-exp | ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 8970 | . . . 4 ⊢ 5 = (4 + 1) | |
2 | 1 | oveq1i 5879 | . . 3 ⊢ (5↑2) = ((4 + 1)↑2) |
3 | 4cn 8986 | . . . . 5 ⊢ 4 ∈ ℂ | |
4 | binom21 10618 | . . . . 5 ⊢ (4 ∈ ℂ → ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1)) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1) |
6 | 2nn0 9182 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
7 | 4nn0 9184 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
8 | 4p1e5 9044 | . . . . 5 ⊢ (4 + 1) = 5 | |
9 | sq4e2t8 10603 | . . . . . . . 8 ⊢ (4↑2) = (2 · 8) | |
10 | 8cn 8994 | . . . . . . . . 9 ⊢ 8 ∈ ℂ | |
11 | 2cn 8979 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
12 | 8t2e16 9487 | . . . . . . . . 9 ⊢ (8 · 2) = ;16 | |
13 | 10, 11, 12 | mulcomli 7955 | . . . . . . . 8 ⊢ (2 · 8) = ;16 |
14 | 9, 13 | eqtri 2198 | . . . . . . 7 ⊢ (4↑2) = ;16 |
15 | 4t2e8 9066 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
16 | 3, 11, 15 | mulcomli 7955 | . . . . . . 7 ⊢ (2 · 4) = 8 |
17 | 14, 16 | oveq12i 5881 | . . . . . 6 ⊢ ((4↑2) + (2 · 4)) = (;16 + 8) |
18 | 1nn0 9181 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
19 | 6nn0 9186 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
20 | 8nn0 9188 | . . . . . . 7 ⊢ 8 ∈ ℕ0 | |
21 | eqid 2177 | . . . . . . 7 ⊢ ;16 = ;16 | |
22 | 1p1e2 9025 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
23 | 6cn 8990 | . . . . . . . 8 ⊢ 6 ∈ ℂ | |
24 | 8p6e14 9456 | . . . . . . . 8 ⊢ (8 + 6) = ;14 | |
25 | 10, 23, 24 | addcomli 8092 | . . . . . . 7 ⊢ (6 + 8) = ;14 |
26 | 18, 19, 20, 21, 22, 7, 25 | decaddci 9433 | . . . . . 6 ⊢ (;16 + 8) = ;24 |
27 | 17, 26 | eqtri 2198 | . . . . 5 ⊢ ((4↑2) + (2 · 4)) = ;24 |
28 | 6, 7, 8, 27 | decsuc 9403 | . . . 4 ⊢ (((4↑2) + (2 · 4)) + 1) = ;25 |
29 | 5, 28 | eqtri 2198 | . . 3 ⊢ ((4 + 1)↑2) = ;25 |
30 | 2, 29 | eqtri 2198 | . 2 ⊢ (5↑2) = ;25 |
31 | 3cn 8983 | . . . . 5 ⊢ 3 ∈ ℂ | |
32 | 31 | negcli 8215 | . . . 4 ⊢ -3 ∈ ℂ |
33 | 3ap0 9004 | . . . . 5 ⊢ 3 # 0 | |
34 | negap0 8577 | . . . . . 6 ⊢ (3 ∈ ℂ → (3 # 0 ↔ -3 # 0)) | |
35 | 31, 34 | ax-mp 5 | . . . . 5 ⊢ (3 # 0 ↔ -3 # 0) |
36 | 33, 35 | mpbi 145 | . . . 4 ⊢ -3 # 0 |
37 | expnegap0 10514 | . . . 4 ⊢ ((-3 ∈ ℂ ∧ -3 # 0 ∧ 2 ∈ ℕ0) → (-3↑-2) = (1 / (-3↑2))) | |
38 | 32, 36, 6, 37 | mp3an 1337 | . . 3 ⊢ (-3↑-2) = (1 / (-3↑2)) |
39 | sqneg 10565 | . . . . . 6 ⊢ (3 ∈ ℂ → (-3↑2) = (3↑2)) | |
40 | 31, 39 | ax-mp 5 | . . . . 5 ⊢ (-3↑2) = (3↑2) |
41 | sq3 10602 | . . . . 5 ⊢ (3↑2) = 9 | |
42 | 40, 41 | eqtri 2198 | . . . 4 ⊢ (-3↑2) = 9 |
43 | 42 | oveq2i 5880 | . . 3 ⊢ (1 / (-3↑2)) = (1 / 9) |
44 | 38, 43 | eqtri 2198 | . 2 ⊢ (-3↑-2) = (1 / 9) |
45 | 30, 44 | pm3.2i 272 | 1 ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 class class class wbr 4000 (class class class)co 5869 ℂcc 7800 0cc0 7802 1c1 7803 + caddc 7805 · cmul 7807 -cneg 8119 # cap 8528 / cdiv 8618 2c2 8959 3c3 8960 4c4 8961 5c5 8962 6c6 8963 8c8 8965 9c9 8966 ℕ0cn0 9165 ;cdc 9373 ↑cexp 10505 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4115 ax-sep 4118 ax-nul 4126 ax-pow 4171 ax-pr 4206 ax-un 4430 ax-setind 4533 ax-iinf 4584 ax-cnex 7893 ax-resscn 7894 ax-1cn 7895 ax-1re 7896 ax-icn 7897 ax-addcl 7898 ax-addrcl 7899 ax-mulcl 7900 ax-mulrcl 7901 ax-addcom 7902 ax-mulcom 7903 ax-addass 7904 ax-mulass 7905 ax-distr 7906 ax-i2m1 7907 ax-0lt1 7908 ax-1rid 7909 ax-0id 7910 ax-rnegex 7911 ax-precex 7912 ax-cnre 7913 ax-pre-ltirr 7914 ax-pre-ltwlin 7915 ax-pre-lttrn 7916 ax-pre-apti 7917 ax-pre-ltadd 7918 ax-pre-mulgt0 7919 ax-pre-mulext 7920 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3576 df-sn 3597 df-pr 3598 df-op 3600 df-uni 3808 df-int 3843 df-iun 3886 df-br 4001 df-opab 4062 df-mpt 4063 df-tr 4099 df-id 4290 df-po 4293 df-iso 4294 df-iord 4363 df-on 4365 df-ilim 4366 df-suc 4368 df-iom 4587 df-xp 4629 df-rel 4630 df-cnv 4631 df-co 4632 df-dm 4633 df-rn 4634 df-res 4635 df-ima 4636 df-iota 5174 df-fun 5214 df-fn 5215 df-f 5216 df-f1 5217 df-fo 5218 df-f1o 5219 df-fv 5220 df-riota 5825 df-ov 5872 df-oprab 5873 df-mpo 5874 df-1st 6135 df-2nd 6136 df-recs 6300 df-frec 6386 df-pnf 7984 df-mnf 7985 df-xr 7986 df-ltxr 7987 df-le 7988 df-sub 8120 df-neg 8121 df-reap 8522 df-ap 8529 df-div 8619 df-inn 8909 df-2 8967 df-3 8968 df-4 8969 df-5 8970 df-6 8971 df-7 8972 df-8 8973 df-9 8974 df-n0 9166 df-z 9243 df-dec 9374 df-uz 9518 df-seqfrec 10432 df-exp 10506 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |