Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ex-exp | GIF version |
Description: Example for df-exp 10451. (Contributed by AV, 4-Sep-2021.) |
Ref | Expression |
---|---|
ex-exp | ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 8915 | . . . 4 ⊢ 5 = (4 + 1) | |
2 | 1 | oveq1i 5851 | . . 3 ⊢ (5↑2) = ((4 + 1)↑2) |
3 | 4cn 8931 | . . . . 5 ⊢ 4 ∈ ℂ | |
4 | binom21 10563 | . . . . 5 ⊢ (4 ∈ ℂ → ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1)) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1) |
6 | 2nn0 9127 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
7 | 4nn0 9129 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
8 | 4p1e5 8989 | . . . . 5 ⊢ (4 + 1) = 5 | |
9 | sq4e2t8 10548 | . . . . . . . 8 ⊢ (4↑2) = (2 · 8) | |
10 | 8cn 8939 | . . . . . . . . 9 ⊢ 8 ∈ ℂ | |
11 | 2cn 8924 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
12 | 8t2e16 9432 | . . . . . . . . 9 ⊢ (8 · 2) = ;16 | |
13 | 10, 11, 12 | mulcomli 7902 | . . . . . . . 8 ⊢ (2 · 8) = ;16 |
14 | 9, 13 | eqtri 2186 | . . . . . . 7 ⊢ (4↑2) = ;16 |
15 | 4t2e8 9011 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
16 | 3, 11, 15 | mulcomli 7902 | . . . . . . 7 ⊢ (2 · 4) = 8 |
17 | 14, 16 | oveq12i 5853 | . . . . . 6 ⊢ ((4↑2) + (2 · 4)) = (;16 + 8) |
18 | 1nn0 9126 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
19 | 6nn0 9131 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
20 | 8nn0 9133 | . . . . . . 7 ⊢ 8 ∈ ℕ0 | |
21 | eqid 2165 | . . . . . . 7 ⊢ ;16 = ;16 | |
22 | 1p1e2 8970 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
23 | 6cn 8935 | . . . . . . . 8 ⊢ 6 ∈ ℂ | |
24 | 8p6e14 9401 | . . . . . . . 8 ⊢ (8 + 6) = ;14 | |
25 | 10, 23, 24 | addcomli 8039 | . . . . . . 7 ⊢ (6 + 8) = ;14 |
26 | 18, 19, 20, 21, 22, 7, 25 | decaddci 9378 | . . . . . 6 ⊢ (;16 + 8) = ;24 |
27 | 17, 26 | eqtri 2186 | . . . . 5 ⊢ ((4↑2) + (2 · 4)) = ;24 |
28 | 6, 7, 8, 27 | decsuc 9348 | . . . 4 ⊢ (((4↑2) + (2 · 4)) + 1) = ;25 |
29 | 5, 28 | eqtri 2186 | . . 3 ⊢ ((4 + 1)↑2) = ;25 |
30 | 2, 29 | eqtri 2186 | . 2 ⊢ (5↑2) = ;25 |
31 | 3cn 8928 | . . . . 5 ⊢ 3 ∈ ℂ | |
32 | 31 | negcli 8162 | . . . 4 ⊢ -3 ∈ ℂ |
33 | 3ap0 8949 | . . . . 5 ⊢ 3 # 0 | |
34 | negap0 8524 | . . . . . 6 ⊢ (3 ∈ ℂ → (3 # 0 ↔ -3 # 0)) | |
35 | 31, 34 | ax-mp 5 | . . . . 5 ⊢ (3 # 0 ↔ -3 # 0) |
36 | 33, 35 | mpbi 144 | . . . 4 ⊢ -3 # 0 |
37 | expnegap0 10459 | . . . 4 ⊢ ((-3 ∈ ℂ ∧ -3 # 0 ∧ 2 ∈ ℕ0) → (-3↑-2) = (1 / (-3↑2))) | |
38 | 32, 36, 6, 37 | mp3an 1327 | . . 3 ⊢ (-3↑-2) = (1 / (-3↑2)) |
39 | sqneg 10510 | . . . . . 6 ⊢ (3 ∈ ℂ → (-3↑2) = (3↑2)) | |
40 | 31, 39 | ax-mp 5 | . . . . 5 ⊢ (-3↑2) = (3↑2) |
41 | sq3 10547 | . . . . 5 ⊢ (3↑2) = 9 | |
42 | 40, 41 | eqtri 2186 | . . . 4 ⊢ (-3↑2) = 9 |
43 | 42 | oveq2i 5852 | . . 3 ⊢ (1 / (-3↑2)) = (1 / 9) |
44 | 38, 43 | eqtri 2186 | . 2 ⊢ (-3↑-2) = (1 / 9) |
45 | 30, 44 | pm3.2i 270 | 1 ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 class class class wbr 3981 (class class class)co 5841 ℂcc 7747 0cc0 7749 1c1 7750 + caddc 7752 · cmul 7754 -cneg 8066 # cap 8475 / cdiv 8564 2c2 8904 3c3 8905 4c4 8906 5c5 8907 6c6 8908 8c8 8910 9c9 8911 ℕ0cn0 9110 ;cdc 9318 ↑cexp 10450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4096 ax-sep 4099 ax-nul 4107 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-iinf 4564 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-mulrcl 7848 ax-addcom 7849 ax-mulcom 7850 ax-addass 7851 ax-mulass 7852 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-1rid 7856 ax-0id 7857 ax-rnegex 7858 ax-precex 7859 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-apti 7864 ax-pre-ltadd 7865 ax-pre-mulgt0 7866 ax-pre-mulext 7867 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rmo 2451 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-nul 3409 df-if 3520 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-tr 4080 df-id 4270 df-po 4273 df-iso 4274 df-iord 4343 df-on 4345 df-ilim 4346 df-suc 4348 df-iom 4567 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-1st 6105 df-2nd 6106 df-recs 6269 df-frec 6355 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-reap 8469 df-ap 8476 df-div 8565 df-inn 8854 df-2 8912 df-3 8913 df-4 8914 df-5 8915 df-6 8916 df-7 8917 df-8 8918 df-9 8919 df-n0 9111 df-z 9188 df-dec 9319 df-uz 9463 df-seqfrec 10377 df-exp 10451 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |