![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ex-exp | GIF version |
Description: Example for df-exp 10610. (Contributed by AV, 4-Sep-2021.) |
Ref | Expression |
---|---|
ex-exp | ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 9044 | . . . 4 ⊢ 5 = (4 + 1) | |
2 | 1 | oveq1i 5928 | . . 3 ⊢ (5↑2) = ((4 + 1)↑2) |
3 | 4cn 9060 | . . . . 5 ⊢ 4 ∈ ℂ | |
4 | binom21 10723 | . . . . 5 ⊢ (4 ∈ ℂ → ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1)) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1) |
6 | 2nn0 9257 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
7 | 4nn0 9259 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
8 | 4p1e5 9118 | . . . . 5 ⊢ (4 + 1) = 5 | |
9 | sq4e2t8 10708 | . . . . . . . 8 ⊢ (4↑2) = (2 · 8) | |
10 | 8cn 9068 | . . . . . . . . 9 ⊢ 8 ∈ ℂ | |
11 | 2cn 9053 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
12 | 8t2e16 9562 | . . . . . . . . 9 ⊢ (8 · 2) = ;16 | |
13 | 10, 11, 12 | mulcomli 8026 | . . . . . . . 8 ⊢ (2 · 8) = ;16 |
14 | 9, 13 | eqtri 2214 | . . . . . . 7 ⊢ (4↑2) = ;16 |
15 | 4t2e8 9140 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
16 | 3, 11, 15 | mulcomli 8026 | . . . . . . 7 ⊢ (2 · 4) = 8 |
17 | 14, 16 | oveq12i 5930 | . . . . . 6 ⊢ ((4↑2) + (2 · 4)) = (;16 + 8) |
18 | 1nn0 9256 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
19 | 6nn0 9261 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
20 | 8nn0 9263 | . . . . . . 7 ⊢ 8 ∈ ℕ0 | |
21 | eqid 2193 | . . . . . . 7 ⊢ ;16 = ;16 | |
22 | 1p1e2 9099 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
23 | 6cn 9064 | . . . . . . . 8 ⊢ 6 ∈ ℂ | |
24 | 8p6e14 9531 | . . . . . . . 8 ⊢ (8 + 6) = ;14 | |
25 | 10, 23, 24 | addcomli 8164 | . . . . . . 7 ⊢ (6 + 8) = ;14 |
26 | 18, 19, 20, 21, 22, 7, 25 | decaddci 9508 | . . . . . 6 ⊢ (;16 + 8) = ;24 |
27 | 17, 26 | eqtri 2214 | . . . . 5 ⊢ ((4↑2) + (2 · 4)) = ;24 |
28 | 6, 7, 8, 27 | decsuc 9478 | . . . 4 ⊢ (((4↑2) + (2 · 4)) + 1) = ;25 |
29 | 5, 28 | eqtri 2214 | . . 3 ⊢ ((4 + 1)↑2) = ;25 |
30 | 2, 29 | eqtri 2214 | . 2 ⊢ (5↑2) = ;25 |
31 | 3cn 9057 | . . . . 5 ⊢ 3 ∈ ℂ | |
32 | 31 | negcli 8287 | . . . 4 ⊢ -3 ∈ ℂ |
33 | 3ap0 9078 | . . . . 5 ⊢ 3 # 0 | |
34 | negap0 8649 | . . . . . 6 ⊢ (3 ∈ ℂ → (3 # 0 ↔ -3 # 0)) | |
35 | 31, 34 | ax-mp 5 | . . . . 5 ⊢ (3 # 0 ↔ -3 # 0) |
36 | 33, 35 | mpbi 145 | . . . 4 ⊢ -3 # 0 |
37 | expnegap0 10618 | . . . 4 ⊢ ((-3 ∈ ℂ ∧ -3 # 0 ∧ 2 ∈ ℕ0) → (-3↑-2) = (1 / (-3↑2))) | |
38 | 32, 36, 6, 37 | mp3an 1348 | . . 3 ⊢ (-3↑-2) = (1 / (-3↑2)) |
39 | sqneg 10669 | . . . . . 6 ⊢ (3 ∈ ℂ → (-3↑2) = (3↑2)) | |
40 | 31, 39 | ax-mp 5 | . . . . 5 ⊢ (-3↑2) = (3↑2) |
41 | sq3 10707 | . . . . 5 ⊢ (3↑2) = 9 | |
42 | 40, 41 | eqtri 2214 | . . . 4 ⊢ (-3↑2) = 9 |
43 | 42 | oveq2i 5929 | . . 3 ⊢ (1 / (-3↑2)) = (1 / 9) |
44 | 38, 43 | eqtri 2214 | . 2 ⊢ (-3↑-2) = (1 / 9) |
45 | 30, 44 | pm3.2i 272 | 1 ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 (class class class)co 5918 ℂcc 7870 0cc0 7872 1c1 7873 + caddc 7875 · cmul 7877 -cneg 8191 # cap 8600 / cdiv 8691 2c2 9033 3c3 9034 4c4 9035 5c5 9036 6c6 9037 8c8 9039 9c9 9040 ℕ0cn0 9240 ;cdc 9448 ↑cexp 10609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-9 9048 df-n0 9241 df-z 9318 df-dec 9449 df-uz 9593 df-seqfrec 10519 df-exp 10610 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |