| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ex-exp | GIF version | ||
| Description: Example for df-exp 10769. (Contributed by AV, 4-Sep-2021.) |
| Ref | Expression |
|---|---|
| ex-exp | ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 9180 | . . . 4 ⊢ 5 = (4 + 1) | |
| 2 | 1 | oveq1i 6017 | . . 3 ⊢ (5↑2) = ((4 + 1)↑2) |
| 3 | 4cn 9196 | . . . . 5 ⊢ 4 ∈ ℂ | |
| 4 | binom21 10882 | . . . . 5 ⊢ (4 ∈ ℂ → ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1)) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1) |
| 6 | 2nn0 9394 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 7 | 4nn0 9396 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
| 8 | 4p1e5 9255 | . . . . 5 ⊢ (4 + 1) = 5 | |
| 9 | sq4e2t8 10867 | . . . . . . . 8 ⊢ (4↑2) = (2 · 8) | |
| 10 | 8cn 9204 | . . . . . . . . 9 ⊢ 8 ∈ ℂ | |
| 11 | 2cn 9189 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
| 12 | 8t2e16 9700 | . . . . . . . . 9 ⊢ (8 · 2) = ;16 | |
| 13 | 10, 11, 12 | mulcomli 8161 | . . . . . . . 8 ⊢ (2 · 8) = ;16 |
| 14 | 9, 13 | eqtri 2250 | . . . . . . 7 ⊢ (4↑2) = ;16 |
| 15 | 4t2e8 9277 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
| 16 | 3, 11, 15 | mulcomli 8161 | . . . . . . 7 ⊢ (2 · 4) = 8 |
| 17 | 14, 16 | oveq12i 6019 | . . . . . 6 ⊢ ((4↑2) + (2 · 4)) = (;16 + 8) |
| 18 | 1nn0 9393 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 19 | 6nn0 9398 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
| 20 | 8nn0 9400 | . . . . . . 7 ⊢ 8 ∈ ℕ0 | |
| 21 | eqid 2229 | . . . . . . 7 ⊢ ;16 = ;16 | |
| 22 | 1p1e2 9235 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
| 23 | 6cn 9200 | . . . . . . . 8 ⊢ 6 ∈ ℂ | |
| 24 | 8p6e14 9669 | . . . . . . . 8 ⊢ (8 + 6) = ;14 | |
| 25 | 10, 23, 24 | addcomli 8299 | . . . . . . 7 ⊢ (6 + 8) = ;14 |
| 26 | 18, 19, 20, 21, 22, 7, 25 | decaddci 9646 | . . . . . 6 ⊢ (;16 + 8) = ;24 |
| 27 | 17, 26 | eqtri 2250 | . . . . 5 ⊢ ((4↑2) + (2 · 4)) = ;24 |
| 28 | 6, 7, 8, 27 | decsuc 9616 | . . . 4 ⊢ (((4↑2) + (2 · 4)) + 1) = ;25 |
| 29 | 5, 28 | eqtri 2250 | . . 3 ⊢ ((4 + 1)↑2) = ;25 |
| 30 | 2, 29 | eqtri 2250 | . 2 ⊢ (5↑2) = ;25 |
| 31 | 3cn 9193 | . . . . 5 ⊢ 3 ∈ ℂ | |
| 32 | 31 | negcli 8422 | . . . 4 ⊢ -3 ∈ ℂ |
| 33 | 3ap0 9214 | . . . . 5 ⊢ 3 # 0 | |
| 34 | negap0 8785 | . . . . . 6 ⊢ (3 ∈ ℂ → (3 # 0 ↔ -3 # 0)) | |
| 35 | 31, 34 | ax-mp 5 | . . . . 5 ⊢ (3 # 0 ↔ -3 # 0) |
| 36 | 33, 35 | mpbi 145 | . . . 4 ⊢ -3 # 0 |
| 37 | expnegap0 10777 | . . . 4 ⊢ ((-3 ∈ ℂ ∧ -3 # 0 ∧ 2 ∈ ℕ0) → (-3↑-2) = (1 / (-3↑2))) | |
| 38 | 32, 36, 6, 37 | mp3an 1371 | . . 3 ⊢ (-3↑-2) = (1 / (-3↑2)) |
| 39 | sqneg 10828 | . . . . . 6 ⊢ (3 ∈ ℂ → (-3↑2) = (3↑2)) | |
| 40 | 31, 39 | ax-mp 5 | . . . . 5 ⊢ (-3↑2) = (3↑2) |
| 41 | sq3 10866 | . . . . 5 ⊢ (3↑2) = 9 | |
| 42 | 40, 41 | eqtri 2250 | . . . 4 ⊢ (-3↑2) = 9 |
| 43 | 42 | oveq2i 6018 | . . 3 ⊢ (1 / (-3↑2)) = (1 / 9) |
| 44 | 38, 43 | eqtri 2250 | . 2 ⊢ (-3↑-2) = (1 / 9) |
| 45 | 30, 44 | pm3.2i 272 | 1 ⊢ ((5↑2) = ;25 ∧ (-3↑-2) = (1 / 9)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 class class class wbr 4083 (class class class)co 6007 ℂcc 8005 0cc0 8007 1c1 8008 + caddc 8010 · cmul 8012 -cneg 8326 # cap 8736 / cdiv 8827 2c2 9169 3c3 9170 4c4 9171 5c5 9172 6c6 9173 8c8 9175 9c9 9176 ℕ0cn0 9377 ;cdc 9586 ↑cexp 10768 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-z 9455 df-dec 9587 df-uz 9731 df-seqfrec 10678 df-exp 10769 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |