| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 9t6e54 | GIF version | ||
| Description: 9 times 6 equals 54. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 9t6e54 | ⊢ (9 · 6) = ;54 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9nn0 9349 | . 2 ⊢ 9 ∈ ℕ0 | |
| 2 | 5nn0 9345 | . 2 ⊢ 5 ∈ ℕ0 | |
| 3 | df-6 9129 | . 2 ⊢ 6 = (5 + 1) | |
| 4 | 9t5e45 9658 | . 2 ⊢ (9 · 5) = ;45 | |
| 5 | 4nn0 9344 | . . 3 ⊢ 4 ∈ ℕ0 | |
| 6 | eqid 2206 | . . 3 ⊢ ;45 = ;45 | |
| 7 | 4p1e5 9203 | . . 3 ⊢ (4 + 1) = 5 | |
| 8 | 1 | nn0cni 9337 | . . . 4 ⊢ 9 ∈ ℂ |
| 9 | 2 | nn0cni 9337 | . . . 4 ⊢ 5 ∈ ℂ |
| 10 | 9p5e14 9623 | . . . 4 ⊢ (9 + 5) = ;14 | |
| 11 | 8, 9, 10 | addcomli 8247 | . . 3 ⊢ (5 + 9) = ;14 |
| 12 | 5, 2, 1, 6, 7, 5, 11 | decaddci 9594 | . 2 ⊢ (;45 + 9) = ;54 |
| 13 | 1, 2, 3, 4, 12 | 4t3lem 9630 | 1 ⊢ (9 · 6) = ;54 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 (class class class)co 5962 1c1 7956 · cmul 7960 4c4 9119 5c5 9120 6c6 9121 9c9 9124 ;cdc 9534 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-cnre 8066 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-iota 5246 df-fun 5287 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-sub 8275 df-inn 9067 df-2 9125 df-3 9126 df-4 9127 df-5 9128 df-6 9129 df-7 9130 df-8 9131 df-9 9132 df-n0 9326 df-dec 9535 |
| This theorem is referenced by: 9t7e63 9660 |
| Copyright terms: Public domain | W3C validator |