| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 9t6e54 | GIF version | ||
| Description: 9 times 6 equals 54. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 9t6e54 | ⊢ (9 · 6) = ;54 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9nn0 9318 | . 2 ⊢ 9 ∈ ℕ0 | |
| 2 | 5nn0 9314 | . 2 ⊢ 5 ∈ ℕ0 | |
| 3 | df-6 9098 | . 2 ⊢ 6 = (5 + 1) | |
| 4 | 9t5e45 9627 | . 2 ⊢ (9 · 5) = ;45 | |
| 5 | 4nn0 9313 | . . 3 ⊢ 4 ∈ ℕ0 | |
| 6 | eqid 2204 | . . 3 ⊢ ;45 = ;45 | |
| 7 | 4p1e5 9172 | . . 3 ⊢ (4 + 1) = 5 | |
| 8 | 1 | nn0cni 9306 | . . . 4 ⊢ 9 ∈ ℂ |
| 9 | 2 | nn0cni 9306 | . . . 4 ⊢ 5 ∈ ℂ |
| 10 | 9p5e14 9592 | . . . 4 ⊢ (9 + 5) = ;14 | |
| 11 | 8, 9, 10 | addcomli 8216 | . . 3 ⊢ (5 + 9) = ;14 |
| 12 | 5, 2, 1, 6, 7, 5, 11 | decaddci 9563 | . 2 ⊢ (;45 + 9) = ;54 |
| 13 | 1, 2, 3, 4, 12 | 4t3lem 9599 | 1 ⊢ (9 · 6) = ;54 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 (class class class)co 5943 1c1 7925 · cmul 7929 4c4 9088 5c5 9089 6c6 9090 9c9 9093 ;cdc 9503 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-sub 8244 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-7 9099 df-8 9100 df-9 9101 df-n0 9295 df-dec 9504 |
| This theorem is referenced by: 9t7e63 9629 |
| Copyright terms: Public domain | W3C validator |