![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 9t6e54 | GIF version |
Description: 9 times 6 equals 54. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
9t6e54 | ⊢ (9 · 6) = ;54 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9nn0 9264 | . 2 ⊢ 9 ∈ ℕ0 | |
2 | 5nn0 9260 | . 2 ⊢ 5 ∈ ℕ0 | |
3 | df-6 9045 | . 2 ⊢ 6 = (5 + 1) | |
4 | 9t5e45 9572 | . 2 ⊢ (9 · 5) = ;45 | |
5 | 4nn0 9259 | . . 3 ⊢ 4 ∈ ℕ0 | |
6 | eqid 2193 | . . 3 ⊢ ;45 = ;45 | |
7 | 4p1e5 9118 | . . 3 ⊢ (4 + 1) = 5 | |
8 | 1 | nn0cni 9252 | . . . 4 ⊢ 9 ∈ ℂ |
9 | 2 | nn0cni 9252 | . . . 4 ⊢ 5 ∈ ℂ |
10 | 9p5e14 9537 | . . . 4 ⊢ (9 + 5) = ;14 | |
11 | 8, 9, 10 | addcomli 8164 | . . 3 ⊢ (5 + 9) = ;14 |
12 | 5, 2, 1, 6, 7, 5, 11 | decaddci 9508 | . 2 ⊢ (;45 + 9) = ;54 |
13 | 1, 2, 3, 4, 12 | 4t3lem 9544 | 1 ⊢ (9 · 6) = ;54 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 (class class class)co 5918 1c1 7873 · cmul 7877 4c4 9035 5c5 9036 6c6 9037 9c9 9040 ;cdc 9448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-sub 8192 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-9 9048 df-n0 9241 df-dec 9449 |
This theorem is referenced by: 9t7e63 9574 |
Copyright terms: Public domain | W3C validator |