![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ex-fac | GIF version |
Description: Example for df-fac 10706. (Contributed by AV, 4-Sep-2021.) |
Ref | Expression |
---|---|
ex-fac | ⊢ (!‘5) = ;;120 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 8981 | . . . 4 ⊢ 5 = (4 + 1) | |
2 | 1 | fveq2i 5519 | . . 3 ⊢ (!‘5) = (!‘(4 + 1)) |
3 | 4nn0 9195 | . . . 4 ⊢ 4 ∈ ℕ0 | |
4 | facp1 10710 | . . . 4 ⊢ (4 ∈ ℕ0 → (!‘(4 + 1)) = ((!‘4) · (4 + 1))) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (!‘(4 + 1)) = ((!‘4) · (4 + 1)) |
6 | 2, 5 | eqtri 2198 | . 2 ⊢ (!‘5) = ((!‘4) · (4 + 1)) |
7 | fac4 10713 | . . . 4 ⊢ (!‘4) = ;24 | |
8 | 4p1e5 9055 | . . . 4 ⊢ (4 + 1) = 5 | |
9 | 7, 8 | oveq12i 5887 | . . 3 ⊢ ((!‘4) · (4 + 1)) = (;24 · 5) |
10 | 5nn0 9196 | . . . 4 ⊢ 5 ∈ ℕ0 | |
11 | 2nn0 9193 | . . . 4 ⊢ 2 ∈ ℕ0 | |
12 | eqid 2177 | . . . 4 ⊢ ;24 = ;24 | |
13 | 0nn0 9191 | . . . 4 ⊢ 0 ∈ ℕ0 | |
14 | 1nn0 9192 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
15 | 5cn 8999 | . . . . . 6 ⊢ 5 ∈ ℂ | |
16 | 2cn 8990 | . . . . . 6 ⊢ 2 ∈ ℂ | |
17 | 5t2e10 9483 | . . . . . 6 ⊢ (5 · 2) = ;10 | |
18 | 15, 16, 17 | mulcomli 7964 | . . . . 5 ⊢ (2 · 5) = ;10 |
19 | 16 | addid2i 8100 | . . . . 5 ⊢ (0 + 2) = 2 |
20 | 14, 13, 11, 18, 19 | decaddi 9443 | . . . 4 ⊢ ((2 · 5) + 2) = ;12 |
21 | 4cn 8997 | . . . . 5 ⊢ 4 ∈ ℂ | |
22 | 5t4e20 9485 | . . . . 5 ⊢ (5 · 4) = ;20 | |
23 | 15, 21, 22 | mulcomli 7964 | . . . 4 ⊢ (4 · 5) = ;20 |
24 | 10, 11, 3, 12, 13, 11, 20, 23 | decmul1c 9448 | . . 3 ⊢ (;24 · 5) = ;;120 |
25 | 9, 24 | eqtri 2198 | . 2 ⊢ ((!‘4) · (4 + 1)) = ;;120 |
26 | 6, 25 | eqtri 2198 | 1 ⊢ (!‘5) = ;;120 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2148 ‘cfv 5217 (class class class)co 5875 0cc0 7811 1c1 7812 + caddc 7814 · cmul 7816 2c2 8970 4c4 8972 5c5 8973 ℕ0cn0 9176 ;cdc 9384 !cfa 10705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4119 ax-sep 4122 ax-nul 4130 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-iinf 4588 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-addcom 7911 ax-mulcom 7912 ax-addass 7913 ax-mulass 7914 ax-distr 7915 ax-i2m1 7916 ax-0lt1 7917 ax-1rid 7918 ax-0id 7919 ax-rnegex 7920 ax-cnre 7922 ax-pre-ltirr 7923 ax-pre-ltwlin 7924 ax-pre-lttrn 7925 ax-pre-ltadd 7927 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-tr 4103 df-id 4294 df-iord 4367 df-on 4369 df-ilim 4370 df-suc 4372 df-iom 4591 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-fv 5225 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-1st 6141 df-2nd 6142 df-recs 6306 df-frec 6392 df-pnf 7994 df-mnf 7995 df-xr 7996 df-ltxr 7997 df-le 7998 df-sub 8130 df-neg 8131 df-inn 8920 df-2 8978 df-3 8979 df-4 8980 df-5 8981 df-6 8982 df-7 8983 df-8 8984 df-9 8985 df-n0 9177 df-z 9254 df-dec 9385 df-uz 9529 df-seqfrec 10446 df-fac 10706 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |