| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ex-fac | GIF version | ||
| Description: Example for df-fac 10943. (Contributed by AV, 4-Sep-2021.) |
| Ref | Expression |
|---|---|
| ex-fac | ⊢ (!‘5) = ;;120 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 9168 | . . . 4 ⊢ 5 = (4 + 1) | |
| 2 | 1 | fveq2i 5629 | . . 3 ⊢ (!‘5) = (!‘(4 + 1)) |
| 3 | 4nn0 9384 | . . . 4 ⊢ 4 ∈ ℕ0 | |
| 4 | facp1 10947 | . . . 4 ⊢ (4 ∈ ℕ0 → (!‘(4 + 1)) = ((!‘4) · (4 + 1))) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (!‘(4 + 1)) = ((!‘4) · (4 + 1)) |
| 6 | 2, 5 | eqtri 2250 | . 2 ⊢ (!‘5) = ((!‘4) · (4 + 1)) |
| 7 | fac4 10950 | . . . 4 ⊢ (!‘4) = ;24 | |
| 8 | 4p1e5 9243 | . . . 4 ⊢ (4 + 1) = 5 | |
| 9 | 7, 8 | oveq12i 6012 | . . 3 ⊢ ((!‘4) · (4 + 1)) = (;24 · 5) |
| 10 | 5nn0 9385 | . . . 4 ⊢ 5 ∈ ℕ0 | |
| 11 | 2nn0 9382 | . . . 4 ⊢ 2 ∈ ℕ0 | |
| 12 | eqid 2229 | . . . 4 ⊢ ;24 = ;24 | |
| 13 | 0nn0 9380 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 14 | 1nn0 9381 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 15 | 5cn 9186 | . . . . . 6 ⊢ 5 ∈ ℂ | |
| 16 | 2cn 9177 | . . . . . 6 ⊢ 2 ∈ ℂ | |
| 17 | 5t2e10 9673 | . . . . . 6 ⊢ (5 · 2) = ;10 | |
| 18 | 15, 16, 17 | mulcomli 8149 | . . . . 5 ⊢ (2 · 5) = ;10 |
| 19 | 16 | addlidi 8285 | . . . . 5 ⊢ (0 + 2) = 2 |
| 20 | 14, 13, 11, 18, 19 | decaddi 9633 | . . . 4 ⊢ ((2 · 5) + 2) = ;12 |
| 21 | 4cn 9184 | . . . . 5 ⊢ 4 ∈ ℂ | |
| 22 | 5t4e20 9675 | . . . . 5 ⊢ (5 · 4) = ;20 | |
| 23 | 15, 21, 22 | mulcomli 8149 | . . . 4 ⊢ (4 · 5) = ;20 |
| 24 | 10, 11, 3, 12, 13, 11, 20, 23 | decmul1c 9638 | . . 3 ⊢ (;24 · 5) = ;;120 |
| 25 | 9, 24 | eqtri 2250 | . 2 ⊢ ((!‘4) · (4 + 1)) = ;;120 |
| 26 | 6, 25 | eqtri 2250 | 1 ⊢ (!‘5) = ;;120 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 ‘cfv 5317 (class class class)co 6000 0cc0 7995 1c1 7996 + caddc 7998 · cmul 8000 2c2 9157 4c4 9159 5c5 9160 ℕ0cn0 9365 ;cdc 9574 !cfa 10942 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-9 9172 df-n0 9366 df-z 9443 df-dec 9575 df-uz 9719 df-seqfrec 10665 df-fac 10943 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |