| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ex-fac | GIF version | ||
| Description: Example for df-fac 10871. (Contributed by AV, 4-Sep-2021.) |
| Ref | Expression |
|---|---|
| ex-fac | ⊢ (!‘5) = ;;120 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 9098 | . . . 4 ⊢ 5 = (4 + 1) | |
| 2 | 1 | fveq2i 5579 | . . 3 ⊢ (!‘5) = (!‘(4 + 1)) |
| 3 | 4nn0 9314 | . . . 4 ⊢ 4 ∈ ℕ0 | |
| 4 | facp1 10875 | . . . 4 ⊢ (4 ∈ ℕ0 → (!‘(4 + 1)) = ((!‘4) · (4 + 1))) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (!‘(4 + 1)) = ((!‘4) · (4 + 1)) |
| 6 | 2, 5 | eqtri 2226 | . 2 ⊢ (!‘5) = ((!‘4) · (4 + 1)) |
| 7 | fac4 10878 | . . . 4 ⊢ (!‘4) = ;24 | |
| 8 | 4p1e5 9173 | . . . 4 ⊢ (4 + 1) = 5 | |
| 9 | 7, 8 | oveq12i 5956 | . . 3 ⊢ ((!‘4) · (4 + 1)) = (;24 · 5) |
| 10 | 5nn0 9315 | . . . 4 ⊢ 5 ∈ ℕ0 | |
| 11 | 2nn0 9312 | . . . 4 ⊢ 2 ∈ ℕ0 | |
| 12 | eqid 2205 | . . . 4 ⊢ ;24 = ;24 | |
| 13 | 0nn0 9310 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 14 | 1nn0 9311 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 15 | 5cn 9116 | . . . . . 6 ⊢ 5 ∈ ℂ | |
| 16 | 2cn 9107 | . . . . . 6 ⊢ 2 ∈ ℂ | |
| 17 | 5t2e10 9603 | . . . . . 6 ⊢ (5 · 2) = ;10 | |
| 18 | 15, 16, 17 | mulcomli 8079 | . . . . 5 ⊢ (2 · 5) = ;10 |
| 19 | 16 | addlidi 8215 | . . . . 5 ⊢ (0 + 2) = 2 |
| 20 | 14, 13, 11, 18, 19 | decaddi 9563 | . . . 4 ⊢ ((2 · 5) + 2) = ;12 |
| 21 | 4cn 9114 | . . . . 5 ⊢ 4 ∈ ℂ | |
| 22 | 5t4e20 9605 | . . . . 5 ⊢ (5 · 4) = ;20 | |
| 23 | 15, 21, 22 | mulcomli 8079 | . . . 4 ⊢ (4 · 5) = ;20 |
| 24 | 10, 11, 3, 12, 13, 11, 20, 23 | decmul1c 9568 | . . 3 ⊢ (;24 · 5) = ;;120 |
| 25 | 9, 24 | eqtri 2226 | . 2 ⊢ ((!‘4) · (4 + 1)) = ;;120 |
| 26 | 6, 25 | eqtri 2226 | 1 ⊢ (!‘5) = ;;120 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2176 ‘cfv 5271 (class class class)co 5944 0cc0 7925 1c1 7926 + caddc 7928 · cmul 7930 2c2 9087 4c4 9089 5c5 9090 ℕ0cn0 9295 ;cdc 9504 !cfa 10870 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-frec 6477 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-5 9098 df-6 9099 df-7 9100 df-8 9101 df-9 9102 df-n0 9296 df-z 9373 df-dec 9505 df-uz 9649 df-seqfrec 10593 df-fac 10871 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |