Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ex-fac | GIF version |
Description: Example for df-fac 10635. (Contributed by AV, 4-Sep-2021.) |
Ref | Expression |
---|---|
ex-fac | ⊢ (!‘5) = ;;120 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 8915 | . . . 4 ⊢ 5 = (4 + 1) | |
2 | 1 | fveq2i 5488 | . . 3 ⊢ (!‘5) = (!‘(4 + 1)) |
3 | 4nn0 9129 | . . . 4 ⊢ 4 ∈ ℕ0 | |
4 | facp1 10639 | . . . 4 ⊢ (4 ∈ ℕ0 → (!‘(4 + 1)) = ((!‘4) · (4 + 1))) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (!‘(4 + 1)) = ((!‘4) · (4 + 1)) |
6 | 2, 5 | eqtri 2186 | . 2 ⊢ (!‘5) = ((!‘4) · (4 + 1)) |
7 | fac4 10642 | . . . 4 ⊢ (!‘4) = ;24 | |
8 | 4p1e5 8989 | . . . 4 ⊢ (4 + 1) = 5 | |
9 | 7, 8 | oveq12i 5853 | . . 3 ⊢ ((!‘4) · (4 + 1)) = (;24 · 5) |
10 | 5nn0 9130 | . . . 4 ⊢ 5 ∈ ℕ0 | |
11 | 2nn0 9127 | . . . 4 ⊢ 2 ∈ ℕ0 | |
12 | eqid 2165 | . . . 4 ⊢ ;24 = ;24 | |
13 | 0nn0 9125 | . . . 4 ⊢ 0 ∈ ℕ0 | |
14 | 1nn0 9126 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
15 | 5cn 8933 | . . . . . 6 ⊢ 5 ∈ ℂ | |
16 | 2cn 8924 | . . . . . 6 ⊢ 2 ∈ ℂ | |
17 | 5t2e10 9417 | . . . . . 6 ⊢ (5 · 2) = ;10 | |
18 | 15, 16, 17 | mulcomli 7902 | . . . . 5 ⊢ (2 · 5) = ;10 |
19 | 16 | addid2i 8037 | . . . . 5 ⊢ (0 + 2) = 2 |
20 | 14, 13, 11, 18, 19 | decaddi 9377 | . . . 4 ⊢ ((2 · 5) + 2) = ;12 |
21 | 4cn 8931 | . . . . 5 ⊢ 4 ∈ ℂ | |
22 | 5t4e20 9419 | . . . . 5 ⊢ (5 · 4) = ;20 | |
23 | 15, 21, 22 | mulcomli 7902 | . . . 4 ⊢ (4 · 5) = ;20 |
24 | 10, 11, 3, 12, 13, 11, 20, 23 | decmul1c 9382 | . . 3 ⊢ (;24 · 5) = ;;120 |
25 | 9, 24 | eqtri 2186 | . 2 ⊢ ((!‘4) · (4 + 1)) = ;;120 |
26 | 6, 25 | eqtri 2186 | 1 ⊢ (!‘5) = ;;120 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 ‘cfv 5187 (class class class)co 5841 0cc0 7749 1c1 7750 + caddc 7752 · cmul 7754 2c2 8904 4c4 8906 5c5 8907 ℕ0cn0 9110 ;cdc 9318 !cfa 10634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4096 ax-sep 4099 ax-nul 4107 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-iinf 4564 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addcom 7849 ax-mulcom 7850 ax-addass 7851 ax-mulass 7852 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-1rid 7856 ax-0id 7857 ax-rnegex 7858 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-ltadd 7865 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-nul 3409 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-tr 4080 df-id 4270 df-iord 4343 df-on 4345 df-ilim 4346 df-suc 4348 df-iom 4567 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-1st 6105 df-2nd 6106 df-recs 6269 df-frec 6355 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-inn 8854 df-2 8912 df-3 8913 df-4 8914 df-5 8915 df-6 8916 df-7 8917 df-8 8918 df-9 8919 df-n0 9111 df-z 9188 df-dec 9319 df-uz 9463 df-seqfrec 10377 df-fac 10635 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |