Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ex-fac | GIF version |
Description: Example for df-fac 10649. (Contributed by AV, 4-Sep-2021.) |
Ref | Expression |
---|---|
ex-fac | ⊢ (!‘5) = ;;120 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 8929 | . . . 4 ⊢ 5 = (4 + 1) | |
2 | 1 | fveq2i 5497 | . . 3 ⊢ (!‘5) = (!‘(4 + 1)) |
3 | 4nn0 9143 | . . . 4 ⊢ 4 ∈ ℕ0 | |
4 | facp1 10653 | . . . 4 ⊢ (4 ∈ ℕ0 → (!‘(4 + 1)) = ((!‘4) · (4 + 1))) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (!‘(4 + 1)) = ((!‘4) · (4 + 1)) |
6 | 2, 5 | eqtri 2191 | . 2 ⊢ (!‘5) = ((!‘4) · (4 + 1)) |
7 | fac4 10656 | . . . 4 ⊢ (!‘4) = ;24 | |
8 | 4p1e5 9003 | . . . 4 ⊢ (4 + 1) = 5 | |
9 | 7, 8 | oveq12i 5863 | . . 3 ⊢ ((!‘4) · (4 + 1)) = (;24 · 5) |
10 | 5nn0 9144 | . . . 4 ⊢ 5 ∈ ℕ0 | |
11 | 2nn0 9141 | . . . 4 ⊢ 2 ∈ ℕ0 | |
12 | eqid 2170 | . . . 4 ⊢ ;24 = ;24 | |
13 | 0nn0 9139 | . . . 4 ⊢ 0 ∈ ℕ0 | |
14 | 1nn0 9140 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
15 | 5cn 8947 | . . . . . 6 ⊢ 5 ∈ ℂ | |
16 | 2cn 8938 | . . . . . 6 ⊢ 2 ∈ ℂ | |
17 | 5t2e10 9431 | . . . . . 6 ⊢ (5 · 2) = ;10 | |
18 | 15, 16, 17 | mulcomli 7916 | . . . . 5 ⊢ (2 · 5) = ;10 |
19 | 16 | addid2i 8051 | . . . . 5 ⊢ (0 + 2) = 2 |
20 | 14, 13, 11, 18, 19 | decaddi 9391 | . . . 4 ⊢ ((2 · 5) + 2) = ;12 |
21 | 4cn 8945 | . . . . 5 ⊢ 4 ∈ ℂ | |
22 | 5t4e20 9433 | . . . . 5 ⊢ (5 · 4) = ;20 | |
23 | 15, 21, 22 | mulcomli 7916 | . . . 4 ⊢ (4 · 5) = ;20 |
24 | 10, 11, 3, 12, 13, 11, 20, 23 | decmul1c 9396 | . . 3 ⊢ (;24 · 5) = ;;120 |
25 | 9, 24 | eqtri 2191 | . 2 ⊢ ((!‘4) · (4 + 1)) = ;;120 |
26 | 6, 25 | eqtri 2191 | 1 ⊢ (!‘5) = ;;120 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 ‘cfv 5196 (class class class)co 5851 0cc0 7763 1c1 7764 + caddc 7766 · cmul 7768 2c2 8918 4c4 8920 5c5 8921 ℕ0cn0 9124 ;cdc 9332 !cfa 10648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7854 ax-resscn 7855 ax-1cn 7856 ax-1re 7857 ax-icn 7858 ax-addcl 7859 ax-addrcl 7860 ax-mulcl 7861 ax-addcom 7863 ax-mulcom 7864 ax-addass 7865 ax-mulass 7866 ax-distr 7867 ax-i2m1 7868 ax-0lt1 7869 ax-1rid 7870 ax-0id 7871 ax-rnegex 7872 ax-cnre 7874 ax-pre-ltirr 7875 ax-pre-ltwlin 7876 ax-pre-lttrn 7877 ax-pre-ltadd 7879 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-recs 6282 df-frec 6368 df-pnf 7945 df-mnf 7946 df-xr 7947 df-ltxr 7948 df-le 7949 df-sub 8081 df-neg 8082 df-inn 8868 df-2 8926 df-3 8927 df-4 8928 df-5 8929 df-6 8930 df-7 8931 df-8 8932 df-9 8933 df-n0 9125 df-z 9202 df-dec 9333 df-uz 9477 df-seqfrec 10391 df-fac 10649 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |