| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ex-fac | GIF version | ||
| Description: Example for df-fac 10869. (Contributed by AV, 4-Sep-2021.) |
| Ref | Expression |
|---|---|
| ex-fac | ⊢ (!‘5) = ;;120 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 9097 | . . . 4 ⊢ 5 = (4 + 1) | |
| 2 | 1 | fveq2i 5578 | . . 3 ⊢ (!‘5) = (!‘(4 + 1)) |
| 3 | 4nn0 9313 | . . . 4 ⊢ 4 ∈ ℕ0 | |
| 4 | facp1 10873 | . . . 4 ⊢ (4 ∈ ℕ0 → (!‘(4 + 1)) = ((!‘4) · (4 + 1))) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (!‘(4 + 1)) = ((!‘4) · (4 + 1)) |
| 6 | 2, 5 | eqtri 2225 | . 2 ⊢ (!‘5) = ((!‘4) · (4 + 1)) |
| 7 | fac4 10876 | . . . 4 ⊢ (!‘4) = ;24 | |
| 8 | 4p1e5 9172 | . . . 4 ⊢ (4 + 1) = 5 | |
| 9 | 7, 8 | oveq12i 5955 | . . 3 ⊢ ((!‘4) · (4 + 1)) = (;24 · 5) |
| 10 | 5nn0 9314 | . . . 4 ⊢ 5 ∈ ℕ0 | |
| 11 | 2nn0 9311 | . . . 4 ⊢ 2 ∈ ℕ0 | |
| 12 | eqid 2204 | . . . 4 ⊢ ;24 = ;24 | |
| 13 | 0nn0 9309 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 14 | 1nn0 9310 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 15 | 5cn 9115 | . . . . . 6 ⊢ 5 ∈ ℂ | |
| 16 | 2cn 9106 | . . . . . 6 ⊢ 2 ∈ ℂ | |
| 17 | 5t2e10 9602 | . . . . . 6 ⊢ (5 · 2) = ;10 | |
| 18 | 15, 16, 17 | mulcomli 8078 | . . . . 5 ⊢ (2 · 5) = ;10 |
| 19 | 16 | addlidi 8214 | . . . . 5 ⊢ (0 + 2) = 2 |
| 20 | 14, 13, 11, 18, 19 | decaddi 9562 | . . . 4 ⊢ ((2 · 5) + 2) = ;12 |
| 21 | 4cn 9113 | . . . . 5 ⊢ 4 ∈ ℂ | |
| 22 | 5t4e20 9604 | . . . . 5 ⊢ (5 · 4) = ;20 | |
| 23 | 15, 21, 22 | mulcomli 8078 | . . . 4 ⊢ (4 · 5) = ;20 |
| 24 | 10, 11, 3, 12, 13, 11, 20, 23 | decmul1c 9567 | . . 3 ⊢ (;24 · 5) = ;;120 |
| 25 | 9, 24 | eqtri 2225 | . 2 ⊢ ((!‘4) · (4 + 1)) = ;;120 |
| 26 | 6, 25 | eqtri 2225 | 1 ⊢ (!‘5) = ;;120 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ∈ wcel 2175 ‘cfv 5270 (class class class)co 5943 0cc0 7924 1c1 7925 + caddc 7927 · cmul 7929 2c2 9086 4c4 9088 5c5 9089 ℕ0cn0 9294 ;cdc 9503 !cfa 10868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-frec 6476 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-7 9099 df-8 9100 df-9 9101 df-n0 9295 df-z 9372 df-dec 9504 df-uz 9648 df-seqfrec 10591 df-fac 10869 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |