![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ex-fac | GIF version |
Description: Example for df-fac 10800. (Contributed by AV, 4-Sep-2021.) |
Ref | Expression |
---|---|
ex-fac | ⊢ (!‘5) = ;;120 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 9046 | . . . 4 ⊢ 5 = (4 + 1) | |
2 | 1 | fveq2i 5558 | . . 3 ⊢ (!‘5) = (!‘(4 + 1)) |
3 | 4nn0 9262 | . . . 4 ⊢ 4 ∈ ℕ0 | |
4 | facp1 10804 | . . . 4 ⊢ (4 ∈ ℕ0 → (!‘(4 + 1)) = ((!‘4) · (4 + 1))) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (!‘(4 + 1)) = ((!‘4) · (4 + 1)) |
6 | 2, 5 | eqtri 2214 | . 2 ⊢ (!‘5) = ((!‘4) · (4 + 1)) |
7 | fac4 10807 | . . . 4 ⊢ (!‘4) = ;24 | |
8 | 4p1e5 9121 | . . . 4 ⊢ (4 + 1) = 5 | |
9 | 7, 8 | oveq12i 5931 | . . 3 ⊢ ((!‘4) · (4 + 1)) = (;24 · 5) |
10 | 5nn0 9263 | . . . 4 ⊢ 5 ∈ ℕ0 | |
11 | 2nn0 9260 | . . . 4 ⊢ 2 ∈ ℕ0 | |
12 | eqid 2193 | . . . 4 ⊢ ;24 = ;24 | |
13 | 0nn0 9258 | . . . 4 ⊢ 0 ∈ ℕ0 | |
14 | 1nn0 9259 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
15 | 5cn 9064 | . . . . . 6 ⊢ 5 ∈ ℂ | |
16 | 2cn 9055 | . . . . . 6 ⊢ 2 ∈ ℂ | |
17 | 5t2e10 9550 | . . . . . 6 ⊢ (5 · 2) = ;10 | |
18 | 15, 16, 17 | mulcomli 8028 | . . . . 5 ⊢ (2 · 5) = ;10 |
19 | 16 | addid2i 8164 | . . . . 5 ⊢ (0 + 2) = 2 |
20 | 14, 13, 11, 18, 19 | decaddi 9510 | . . . 4 ⊢ ((2 · 5) + 2) = ;12 |
21 | 4cn 9062 | . . . . 5 ⊢ 4 ∈ ℂ | |
22 | 5t4e20 9552 | . . . . 5 ⊢ (5 · 4) = ;20 | |
23 | 15, 21, 22 | mulcomli 8028 | . . . 4 ⊢ (4 · 5) = ;20 |
24 | 10, 11, 3, 12, 13, 11, 20, 23 | decmul1c 9515 | . . 3 ⊢ (;24 · 5) = ;;120 |
25 | 9, 24 | eqtri 2214 | . 2 ⊢ ((!‘4) · (4 + 1)) = ;;120 |
26 | 6, 25 | eqtri 2214 | 1 ⊢ (!‘5) = ;;120 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 ‘cfv 5255 (class class class)co 5919 0cc0 7874 1c1 7875 + caddc 7877 · cmul 7879 2c2 9035 4c4 9037 5c5 9038 ℕ0cn0 9243 ;cdc 9451 !cfa 10799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-9 9050 df-n0 9244 df-z 9321 df-dec 9452 df-uz 9596 df-seqfrec 10522 df-fac 10800 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |