Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3p1e4 | GIF version |
Description: 3 + 1 = 4. (Contributed by Mario Carneiro, 18-Apr-2015.) |
Ref | Expression |
---|---|
3p1e4 | ⊢ (3 + 1) = 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 8918 | . 2 ⊢ 4 = (3 + 1) | |
2 | 1 | eqcomi 2169 | 1 ⊢ (3 + 1) = 4 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 (class class class)co 5842 1c1 7754 + caddc 7756 3c3 8909 4c4 8910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-4 8918 |
This theorem is referenced by: 7t6e42 9434 8t5e40 9439 9t5e45 9446 fac4 10646 4bc3eq4 10686 hash4 10727 cosq23lt0 13394 binom4 13537 |
Copyright terms: Public domain | W3C validator |