| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3p1e4 | GIF version | ||
| Description: 3 + 1 = 4. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 3p1e4 | ⊢ (3 + 1) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 9068 | . 2 ⊢ 4 = (3 + 1) | |
| 2 | 1 | eqcomi 2200 | 1 ⊢ (3 + 1) = 4 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 (class class class)co 5925 1c1 7897 + caddc 7899 3c3 9059 4c4 9060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-4 9068 |
| This theorem is referenced by: 7t6e42 9586 8t5e40 9591 9t5e45 9598 fac4 10842 4bc3eq4 10882 hash4 10923 2exp16 12631 cosq23lt0 15153 binom4 15299 |
| Copyright terms: Public domain | W3C validator |