![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3p1e4 | GIF version |
Description: 3 + 1 = 4. (Contributed by Mario Carneiro, 18-Apr-2015.) |
Ref | Expression |
---|---|
3p1e4 | ⊢ (3 + 1) = 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 9045 | . 2 ⊢ 4 = (3 + 1) | |
2 | 1 | eqcomi 2197 | 1 ⊢ (3 + 1) = 4 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 (class class class)co 5919 1c1 7875 + caddc 7877 3c3 9036 4c4 9037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-4 9045 |
This theorem is referenced by: 7t6e42 9563 8t5e40 9568 9t5e45 9575 fac4 10807 4bc3eq4 10847 hash4 10888 cosq23lt0 15009 binom4 15152 |
Copyright terms: Public domain | W3C validator |