ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4p1e5 Unicode version

Theorem 4p1e5 9069
Description: 4 + 1 = 5. (Contributed by Mario Carneiro, 18-Apr-2015.)
Assertion
Ref Expression
4p1e5  |-  ( 4  +  1 )  =  5

Proof of Theorem 4p1e5
StepHypRef Expression
1 df-5 8995 . 2  |-  5  =  ( 4  +  1 )
21eqcomi 2191 1  |-  ( 4  +  1 )  =  5
Colors of variables: wff set class
Syntax hints:    = wceq 1363  (class class class)co 5888   1c1 7826    + caddc 7828   4c4 8986   5c5 8987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1457  ax-gen 1459  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-cleq 2180  df-5 8995
This theorem is referenced by:  8t7e56  9517  9t6e54  9523  ex-exp  14832  ex-fac  14833
  Copyright terms: Public domain W3C validator