ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4p1e5 Unicode version

Theorem 4p1e5 9208
Description: 4 + 1 = 5. (Contributed by Mario Carneiro, 18-Apr-2015.)
Assertion
Ref Expression
4p1e5  |-  ( 4  +  1 )  =  5

Proof of Theorem 4p1e5
StepHypRef Expression
1 df-5 9133 . 2  |-  5  =  ( 4  +  1 )
21eqcomi 2211 1  |-  ( 4  +  1 )  =  5
Colors of variables: wff set class
Syntax hints:    = wceq 1373  (class class class)co 5967   1c1 7961    + caddc 7963   4c4 9124   5c5 9125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-cleq 2200  df-5 9133
This theorem is referenced by:  8t7e56  9658  9t6e54  9664  2exp16  12875  ex-exp  15863  ex-fac  15864
  Copyright terms: Public domain W3C validator