| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > a7s | GIF version | ||
| Description: Swap quantifiers in an antecedent. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| a7s.1 | ⊢ (∀𝑥∀𝑦𝜑 → 𝜓) | 
| Ref | Expression | 
|---|---|
| a7s | ⊢ (∀𝑦∀𝑥𝜑 → 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-7 1462 | . 2 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
| 2 | a7s.1 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → 𝜓) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (∀𝑦∀𝑥𝜑 → 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∀wal 1362 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-7 1462 | 
| This theorem is referenced by: cbv2h 1762 hbsb4t 2032 mor 2087 | 
| Copyright terms: Public domain | W3C validator |