Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbv2h GIF version

Theorem cbv2h 1728
 Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
cbv2h.1 (𝜑 → (𝜓 → ∀𝑦𝜓))
cbv2h.2 (𝜑 → (𝜒 → ∀𝑥𝜒))
cbv2h.3 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
Assertion
Ref Expression
cbv2h (∀𝑥𝑦𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))

Proof of Theorem cbv2h
StepHypRef Expression
1 cbv2h.1 . . 3 (𝜑 → (𝜓 → ∀𝑦𝜓))
2 cbv2h.2 . . 3 (𝜑 → (𝜒 → ∀𝑥𝜒))
3 cbv2h.3 . . . 4 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
4 biimp 117 . . . 4 ((𝜓𝜒) → (𝜓𝜒))
53, 4syl6 33 . . 3 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
61, 2, 5cbv1h 1726 . 2 (∀𝑥𝑦𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒))
7 equcomi 1684 . . . . 5 (𝑦 = 𝑥𝑥 = 𝑦)
8 biimpr 129 . . . . 5 ((𝜓𝜒) → (𝜒𝜓))
97, 3, 8syl56 34 . . . 4 (𝜑 → (𝑦 = 𝑥 → (𝜒𝜓)))
102, 1, 9cbv1h 1726 . . 3 (∀𝑦𝑥𝜑 → (∀𝑦𝜒 → ∀𝑥𝜓))
1110a7s 1434 . 2 (∀𝑥𝑦𝜑 → (∀𝑦𝜒 → ∀𝑥𝜓))
126, 11impbid 128 1 (∀𝑥𝑦𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 104  ∀wal 1333 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515 This theorem depends on definitions:  df-bi 116  df-nf 1441 This theorem is referenced by:  cbv2  1729
 Copyright terms: Public domain W3C validator