ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbv2h GIF version

Theorem cbv2h 1678
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
cbv2h.1 (𝜑 → (𝜓 → ∀𝑦𝜓))
cbv2h.2 (𝜑 → (𝜒 → ∀𝑥𝜒))
cbv2h.3 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
Assertion
Ref Expression
cbv2h (∀𝑥𝑦𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))

Proof of Theorem cbv2h
StepHypRef Expression
1 cbv2h.1 . . 3 (𝜑 → (𝜓 → ∀𝑦𝜓))
2 cbv2h.2 . . 3 (𝜑 → (𝜒 → ∀𝑥𝜒))
3 cbv2h.3 . . . 4 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
4 bi1 116 . . . 4 ((𝜓𝜒) → (𝜓𝜒))
53, 4syl6 33 . . 3 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
61, 2, 5cbv1h 1677 . 2 (∀𝑥𝑦𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒))
7 equcomi 1635 . . . . 5 (𝑦 = 𝑥𝑥 = 𝑦)
8 bi2 128 . . . . 5 ((𝜓𝜒) → (𝜒𝜓))
97, 3, 8syl56 34 . . . 4 (𝜑 → (𝑦 = 𝑥 → (𝜒𝜓)))
102, 1, 9cbv1h 1677 . . 3 (∀𝑦𝑥𝜑 → (∀𝑦𝜒 → ∀𝑥𝜓))
1110a7s 1386 . 2 (∀𝑥𝑦𝜑 → (∀𝑦𝜒 → ∀𝑥𝜓))
126, 11impbid 127 1 (∀𝑥𝑦𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wal 1285
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471
This theorem depends on definitions:  df-bi 115  df-nf 1393
This theorem is referenced by:  cbv2  1679
  Copyright terms: Public domain W3C validator