| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cbv2h | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| cbv2h.1 | ⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) | 
| cbv2h.2 | ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) | 
| cbv2h.3 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | 
| Ref | Expression | 
|---|---|
| cbv2h | ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cbv2h.1 | . . 3 ⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) | |
| 2 | cbv2h.2 | . . 3 ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) | |
| 3 | cbv2h.3 | . . . 4 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
| 4 | biimp 118 | . . . 4 ⊢ ((𝜓 ↔ 𝜒) → (𝜓 → 𝜒)) | |
| 5 | 3, 4 | syl6 33 | . . 3 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) | 
| 6 | 1, 2, 5 | cbv1h 1760 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒)) | 
| 7 | equcomi 1718 | . . . . 5 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
| 8 | biimpr 130 | . . . . 5 ⊢ ((𝜓 ↔ 𝜒) → (𝜒 → 𝜓)) | |
| 9 | 7, 3, 8 | syl56 34 | . . . 4 ⊢ (𝜑 → (𝑦 = 𝑥 → (𝜒 → 𝜓))) | 
| 10 | 2, 1, 9 | cbv1h 1760 | . . 3 ⊢ (∀𝑦∀𝑥𝜑 → (∀𝑦𝜒 → ∀𝑥𝜓)) | 
| 11 | 10 | a7s 1468 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑦𝜒 → ∀𝑥𝜓)) | 
| 12 | 6, 11 | impbid 129 | 1 ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 | 
| This theorem is referenced by: cbv2 1763 | 
| Copyright terms: Public domain | W3C validator |