![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > alimi | GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
alimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
alimi | ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1447 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) | |
2 | alimi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | mpg 1451 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1351 |
This theorem was proved from axioms: ax-mp 5 ax-5 1447 ax-gen 1449 |
This theorem is referenced by: 2alimi 1456 al2imi 1458 alrimih 1469 hbal 1477 19.26 1481 19.33 1484 hbequid 1513 equidqe 1532 hbim 1545 hbor 1546 nford 1567 nfand 1568 nfal 1576 nfalt 1578 19.21ht 1581 exbi 1604 19.29 1620 19.25 1626 alexim 1645 alexnim 1648 19.9hd 1662 19.32r 1680 ax10 1717 spimh 1737 equvini 1758 nfexd 1761 stdpc4 1775 ax10oe 1797 sbcof2 1810 sb4bor 1835 nfsb2or 1837 spsbim 1843 ax16i 1858 sbi2v 1892 nfsbt 1976 nfsbd 1977 sbalyz 1999 hbsb4t 2013 dvelimor 2018 sbal2 2020 mo2n 2054 eumo0 2057 mor 2068 bm1.1 2162 alral 2522 rgen2a 2531 ralimi2 2537 rexim 2571 r19.32r 2623 ceqsalt 2765 spcgft 2816 spcegft 2818 spc2gv 2830 spc3gv 2832 rspct 2836 elabgt 2880 reu6 2928 sbciegft 2995 csbeq2 3083 csbnestgf 3111 ssrmof 3220 rabss2 3240 rabxmdc 3456 undif4 3487 ssdif0im 3489 inssdif0im 3492 ssundifim 3508 ralf0 3528 ralm 3529 intmin4 3874 dfiin2g 3921 invdisj 3999 trint 4118 a9evsep 4127 axnul 4130 csbexga 4133 exmidn0m 4203 exmidsssn 4204 exmidsssnc 4205 exmid0el 4206 ordunisuc2r 4515 tfi 4583 peano5 4599 ssrelrel 4728 issref 5013 iotanul 5195 iota4 5198 dffun5r 5230 fv3 5540 mptfvex 5603 ssoprab2 5933 mpofvex 6206 tfri1dALT 6354 prodeq2w 11566 bj-nfalt 14601 elabgft1 14615 bj-rspgt 14623 bj-axemptylem 14729 bj-indind 14769 setindis 14804 bdsetindis 14806 bj-inf2vnlem1 14807 bj-inf2vn 14811 bj-inf2vn2 14812 |
Copyright terms: Public domain | W3C validator |