![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > alimi | GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
alimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
alimi | ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1458 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) | |
2 | alimi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | mpg 1462 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1362 |
This theorem was proved from axioms: ax-mp 5 ax-5 1458 ax-gen 1460 |
This theorem is referenced by: 2alimi 1467 al2imi 1469 alrimih 1480 hbal 1488 19.26 1492 19.33 1495 hbequid 1524 equidqe 1543 hbim 1556 hbor 1557 nford 1578 nfand 1579 nfal 1587 nfalt 1589 19.21ht 1592 exbi 1615 19.29 1631 19.25 1637 alexim 1656 alexnim 1659 19.9hd 1673 19.32r 1691 ax10 1728 spimh 1748 equvini 1769 nfexd 1772 stdpc4 1786 ax10oe 1808 sbcof2 1821 sb4bor 1846 nfsb2or 1848 spsbim 1854 ax16i 1869 sbi2v 1904 nfsbt 1992 nfsbd 1993 sbalyz 2015 hbsb4t 2029 dvelimor 2034 sbal2 2036 mo2n 2070 eumo0 2073 mor 2084 bm1.1 2178 alral 2539 rgen2a 2548 ralimi2 2554 rexim 2588 r19.32r 2640 ceqsalt 2786 spcgft 2837 spcegft 2839 spc2gv 2851 spc3gv 2853 rspct 2857 elabgt 2901 reu6 2949 sbciegft 3016 csbeq2 3104 csbnestgf 3133 ssrmof 3242 rabss2 3262 rabxmdc 3478 undif4 3509 ssdif0im 3511 inssdif0im 3514 ssundifim 3530 ralf0 3549 ralm 3550 intmin4 3898 dfiin2g 3945 invdisj 4023 trint 4142 a9evsep 4151 axnul 4154 csbexga 4157 exmidn0m 4230 exmidsssn 4231 exmidsssnc 4232 exmid0el 4233 ordunisuc2r 4546 tfi 4614 peano5 4630 ssrelrel 4759 issref 5048 iotanul 5230 iota4 5234 dffun5r 5266 fv3 5577 mptfvex 5643 ssoprab2 5974 mpofvex 6256 tfri1dALT 6404 prodeq2w 11699 bj-nfalt 15256 elabgft1 15270 bj-rspgt 15278 bj-axemptylem 15384 bj-indind 15424 setindis 15459 bdsetindis 15461 bj-inf2vnlem1 15462 bj-inf2vn 15466 bj-inf2vn2 15467 |
Copyright terms: Public domain | W3C validator |