Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > alimi | GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
alimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
alimi | ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1435 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) | |
2 | alimi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | mpg 1439 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 |
This theorem was proved from axioms: ax-mp 5 ax-5 1435 ax-gen 1437 |
This theorem is referenced by: 2alimi 1444 al2imi 1446 alrimih 1457 hbal 1465 19.26 1469 19.33 1472 hbequid 1501 equidqe 1520 hbim 1533 hbor 1534 nford 1555 nfand 1556 nfal 1564 nfalt 1566 19.21ht 1569 exbi 1592 19.29 1608 19.25 1614 alexim 1633 alexnim 1636 19.9hd 1650 19.32r 1668 ax10 1705 spimh 1725 equvini 1746 nfexd 1749 stdpc4 1763 ax10oe 1785 sbcof2 1798 sb4bor 1823 nfsb2or 1825 spsbim 1831 ax16i 1846 sbi2v 1880 nfsbt 1964 nfsbd 1965 sbalyz 1987 hbsb4t 2001 dvelimor 2006 sbal2 2008 mo2n 2042 eumo0 2045 mor 2056 bm1.1 2150 alral 2511 rgen2a 2520 ralimi2 2526 rexim 2560 r19.32r 2612 ceqsalt 2752 spcgft 2803 spcegft 2805 spc2gv 2817 spc3gv 2819 rspct 2823 elabgt 2867 reu6 2915 sbciegft 2981 csbeq2 3069 csbnestgf 3097 ssrmof 3205 rabss2 3225 rabxmdc 3440 undif4 3471 ssdif0im 3473 inssdif0im 3476 ssundifim 3492 ralf0 3512 ralm 3513 intmin4 3852 dfiin2g 3899 invdisj 3976 trint 4095 a9evsep 4104 axnul 4107 csbexga 4110 exmidn0m 4180 exmidsssn 4181 exmidsssnc 4182 exmid0el 4183 ordunisuc2r 4491 tfi 4559 peano5 4575 ssrelrel 4704 issref 4986 iotanul 5168 iota4 5171 dffun5r 5200 fv3 5509 mptfvex 5571 ssoprab2 5898 mpofvex 6171 tfri1dALT 6319 prodeq2w 11497 bj-nfalt 13645 elabgft1 13659 bj-rspgt 13667 bj-axemptylem 13774 bj-indind 13814 setindis 13849 bdsetindis 13851 bj-inf2vnlem1 13852 bj-inf2vn 13856 bj-inf2vn2 13857 |
Copyright terms: Public domain | W3C validator |