| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > alimi | GIF version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| alimi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| alimi | ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1461 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) | |
| 2 | alimi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | mpg 1465 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 |
| This theorem was proved from axioms: ax-mp 5 ax-5 1461 ax-gen 1463 |
| This theorem is referenced by: 2alimi 1470 al2imi 1472 alrimih 1483 hbal 1491 19.26 1495 19.33 1498 hbequid 1527 equidqe 1546 hbim 1559 hbor 1560 nford 1581 nfand 1582 nfal 1590 nfalt 1592 19.21ht 1595 exbi 1618 19.29 1634 19.25 1640 alexim 1659 alexnim 1662 19.9hd 1676 19.32r 1694 ax10 1731 spimh 1751 equvini 1772 nfexd 1775 stdpc4 1789 ax10oe 1811 sbcof2 1824 sb4bor 1849 nfsb2or 1851 spsbim 1857 ax16i 1872 sbi2v 1907 nfsbt 1995 nfsbd 1996 sbalyz 2018 hbsb4t 2032 dvelimor 2037 sbal2 2039 mo2n 2073 eumo0 2076 mor 2087 bm1.1 2181 alral 2542 rgen2a 2551 ralimi2 2557 rexim 2591 r19.32r 2643 ceqsalt 2789 spcgft 2841 spcegft 2843 spc2gv 2855 spc3gv 2857 rspct 2861 elabgt 2905 reu6 2953 sbciegft 3020 csbeq2 3108 csbnestgf 3137 ssrmof 3247 rabss2 3267 rabxmdc 3483 undif4 3514 ssdif0im 3516 inssdif0im 3519 ssundifim 3535 ralf0 3554 ralm 3555 intmin4 3903 dfiin2g 3950 invdisj 4028 trint 4147 a9evsep 4156 axnul 4159 csbexga 4162 exmidn0m 4235 exmidsssn 4236 exmidsssnc 4237 exmid0el 4238 ordunisuc2r 4551 tfi 4619 peano5 4635 ssrelrel 4764 issref 5053 iotanul 5235 iota4 5239 dffun5r 5271 fv3 5584 mptfvex 5650 ssoprab2 5982 mpofvex 6272 tfri1dALT 6418 prodeq2w 11738 bj-nfalt 15494 elabgft1 15508 bj-rspgt 15516 bj-axemptylem 15622 bj-indind 15662 setindis 15697 bdsetindis 15699 bj-inf2vnlem1 15700 bj-inf2vn 15704 bj-inf2vn2 15705 |
| Copyright terms: Public domain | W3C validator |