Proof of Theorem mor
Step | Hyp | Ref
| Expression |
1 | | mor.1 |
. . 3
⊢
Ⅎ𝑦𝜑 |
2 | 1 | sb8e 1850 |
. 2
⊢
(∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) |
3 | | impexp 261 |
. . . . 5
⊢ (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ (𝜑 → ([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) |
4 | | bi2.04 247 |
. . . . 5
⊢ ((𝜑 → ([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦)) ↔ ([𝑦 / 𝑥]𝜑 → (𝜑 → 𝑥 = 𝑦))) |
5 | 3, 4 | bitri 183 |
. . . 4
⊢ (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ([𝑦 / 𝑥]𝜑 → (𝜑 → 𝑥 = 𝑦))) |
6 | 5 | 2albii 1464 |
. . 3
⊢
(∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥∀𝑦([𝑦 / 𝑥]𝜑 → (𝜑 → 𝑥 = 𝑦))) |
7 | | nfs1v 1932 |
. . . . . 6
⊢
Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
8 | 7 | nfri 1512 |
. . . . 5
⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) |
9 | 8 | eximi 1593 |
. . . 4
⊢
(∃𝑦[𝑦 / 𝑥]𝜑 → ∃𝑦∀𝑥[𝑦 / 𝑥]𝜑) |
10 | | alim 1450 |
. . . . . . 7
⊢
(∀𝑥([𝑦 / 𝑥]𝜑 → (𝜑 → 𝑥 = 𝑦)) → (∀𝑥[𝑦 / 𝑥]𝜑 → ∀𝑥(𝜑 → 𝑥 = 𝑦))) |
11 | 10 | alimi 1448 |
. . . . . 6
⊢
(∀𝑦∀𝑥([𝑦 / 𝑥]𝜑 → (𝜑 → 𝑥 = 𝑦)) → ∀𝑦(∀𝑥[𝑦 / 𝑥]𝜑 → ∀𝑥(𝜑 → 𝑥 = 𝑦))) |
12 | 11 | a7s 1447 |
. . . . 5
⊢
(∀𝑥∀𝑦([𝑦 / 𝑥]𝜑 → (𝜑 → 𝑥 = 𝑦)) → ∀𝑦(∀𝑥[𝑦 / 𝑥]𝜑 → ∀𝑥(𝜑 → 𝑥 = 𝑦))) |
13 | | exim 1592 |
. . . . 5
⊢
(∀𝑦(∀𝑥[𝑦 / 𝑥]𝜑 → ∀𝑥(𝜑 → 𝑥 = 𝑦)) → (∃𝑦∀𝑥[𝑦 / 𝑥]𝜑 → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
14 | 12, 13 | syl 14 |
. . . 4
⊢
(∀𝑥∀𝑦([𝑦 / 𝑥]𝜑 → (𝜑 → 𝑥 = 𝑦)) → (∃𝑦∀𝑥[𝑦 / 𝑥]𝜑 → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
15 | 9, 14 | syl5com 29 |
. . 3
⊢
(∃𝑦[𝑦 / 𝑥]𝜑 → (∀𝑥∀𝑦([𝑦 / 𝑥]𝜑 → (𝜑 → 𝑥 = 𝑦)) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
16 | 6, 15 | syl5bi 151 |
. 2
⊢
(∃𝑦[𝑦 / 𝑥]𝜑 → (∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
17 | 2, 16 | sylbi 120 |
1
⊢
(∃𝑥𝜑 → (∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |