Proof of Theorem mor
| Step | Hyp | Ref
 | Expression | 
| 1 |   | mor.1 | 
. . 3
⊢
Ⅎ𝑦𝜑 | 
| 2 | 1 | sb8e 1871 | 
. 2
⊢
(∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) | 
| 3 |   | impexp 263 | 
. . . . 5
⊢ (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ (𝜑 → ([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) | 
| 4 |   | bi2.04 248 | 
. . . . 5
⊢ ((𝜑 → ([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦)) ↔ ([𝑦 / 𝑥]𝜑 → (𝜑 → 𝑥 = 𝑦))) | 
| 5 | 3, 4 | bitri 184 | 
. . . 4
⊢ (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ([𝑦 / 𝑥]𝜑 → (𝜑 → 𝑥 = 𝑦))) | 
| 6 | 5 | 2albii 1485 | 
. . 3
⊢
(∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥∀𝑦([𝑦 / 𝑥]𝜑 → (𝜑 → 𝑥 = 𝑦))) | 
| 7 |   | nfs1v 1958 | 
. . . . . 6
⊢
Ⅎ𝑥[𝑦 / 𝑥]𝜑 | 
| 8 | 7 | nfri 1533 | 
. . . . 5
⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | 
| 9 | 8 | eximi 1614 | 
. . . 4
⊢
(∃𝑦[𝑦 / 𝑥]𝜑 → ∃𝑦∀𝑥[𝑦 / 𝑥]𝜑) | 
| 10 |   | alim 1471 | 
. . . . . . 7
⊢
(∀𝑥([𝑦 / 𝑥]𝜑 → (𝜑 → 𝑥 = 𝑦)) → (∀𝑥[𝑦 / 𝑥]𝜑 → ∀𝑥(𝜑 → 𝑥 = 𝑦))) | 
| 11 | 10 | alimi 1469 | 
. . . . . 6
⊢
(∀𝑦∀𝑥([𝑦 / 𝑥]𝜑 → (𝜑 → 𝑥 = 𝑦)) → ∀𝑦(∀𝑥[𝑦 / 𝑥]𝜑 → ∀𝑥(𝜑 → 𝑥 = 𝑦))) | 
| 12 | 11 | a7s 1468 | 
. . . . 5
⊢
(∀𝑥∀𝑦([𝑦 / 𝑥]𝜑 → (𝜑 → 𝑥 = 𝑦)) → ∀𝑦(∀𝑥[𝑦 / 𝑥]𝜑 → ∀𝑥(𝜑 → 𝑥 = 𝑦))) | 
| 13 |   | exim 1613 | 
. . . . 5
⊢
(∀𝑦(∀𝑥[𝑦 / 𝑥]𝜑 → ∀𝑥(𝜑 → 𝑥 = 𝑦)) → (∃𝑦∀𝑥[𝑦 / 𝑥]𝜑 → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) | 
| 14 | 12, 13 | syl 14 | 
. . . 4
⊢
(∀𝑥∀𝑦([𝑦 / 𝑥]𝜑 → (𝜑 → 𝑥 = 𝑦)) → (∃𝑦∀𝑥[𝑦 / 𝑥]𝜑 → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) | 
| 15 | 9, 14 | syl5com 29 | 
. . 3
⊢
(∃𝑦[𝑦 / 𝑥]𝜑 → (∀𝑥∀𝑦([𝑦 / 𝑥]𝜑 → (𝜑 → 𝑥 = 𝑦)) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) | 
| 16 | 6, 15 | biimtrid 152 | 
. 2
⊢
(∃𝑦[𝑦 / 𝑥]𝜑 → (∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) | 
| 17 | 2, 16 | sylbi 121 | 
1
⊢
(∃𝑥𝜑 → (∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |