ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbsb4t GIF version

Theorem hbsb4t 1937
Description: A variable not free remains so after substitution with a distinct variable (closed form of hbsb4 1936). (Contributed by NM, 7-Apr-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Assertion
Ref Expression
hbsb4t (∀𝑥𝑧(𝜑 → ∀𝑧𝜑) → (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)))

Proof of Theorem hbsb4t
StepHypRef Expression
1 hba1 1478 . . 3 (∀𝑧𝜑 → ∀𝑧𝑧𝜑)
21hbsb4 1936 . 2 (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]∀𝑧𝜑 → ∀𝑧[𝑦 / 𝑥]∀𝑧𝜑))
3 spsbim 1771 . . . . 5 (∀𝑥(𝜑 → ∀𝑧𝜑) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]∀𝑧𝜑))
43sps 1475 . . . 4 (∀𝑧𝑥(𝜑 → ∀𝑧𝜑) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]∀𝑧𝜑))
5 ax-4 1445 . . . . . . 7 (∀𝑧𝜑𝜑)
65sbimi 1694 . . . . . 6 ([𝑦 / 𝑥]∀𝑧𝜑 → [𝑦 / 𝑥]𝜑)
76alimi 1389 . . . . 5 (∀𝑧[𝑦 / 𝑥]∀𝑧𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)
87a1i 9 . . . 4 (∀𝑧𝑥(𝜑 → ∀𝑧𝜑) → (∀𝑧[𝑦 / 𝑥]∀𝑧𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑))
94, 8imim12d 73 . . 3 (∀𝑧𝑥(𝜑 → ∀𝑧𝜑) → (([𝑦 / 𝑥]∀𝑧𝜑 → ∀𝑧[𝑦 / 𝑥]∀𝑧𝜑) → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)))
109a7s 1388 . 2 (∀𝑥𝑧(𝜑 → ∀𝑧𝜑) → (([𝑦 / 𝑥]∀𝑧𝜑 → ∀𝑧[𝑦 / 𝑥]∀𝑧𝜑) → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)))
112, 10syl5 32 1 (∀𝑥𝑧(𝜑 → ∀𝑧𝜑) → (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1287  [wsb 1692
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473
This theorem depends on definitions:  df-bi 115  df-nf 1395  df-sb 1693
This theorem is referenced by:  nfsb4t  1938
  Copyright terms: Public domain W3C validator