ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbsb4t GIF version

Theorem hbsb4t 2001
Description: A variable not free remains so after substitution with a distinct variable (closed form of hbsb4 2000). (Contributed by NM, 7-Apr-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Assertion
Ref Expression
hbsb4t (∀𝑥𝑧(𝜑 → ∀𝑧𝜑) → (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)))

Proof of Theorem hbsb4t
StepHypRef Expression
1 hba1 1528 . . 3 (∀𝑧𝜑 → ∀𝑧𝑧𝜑)
21hbsb4 2000 . 2 (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]∀𝑧𝜑 → ∀𝑧[𝑦 / 𝑥]∀𝑧𝜑))
3 spsbim 1831 . . . . 5 (∀𝑥(𝜑 → ∀𝑧𝜑) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]∀𝑧𝜑))
43sps 1525 . . . 4 (∀𝑧𝑥(𝜑 → ∀𝑧𝜑) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]∀𝑧𝜑))
5 ax-4 1498 . . . . . . 7 (∀𝑧𝜑𝜑)
65sbimi 1752 . . . . . 6 ([𝑦 / 𝑥]∀𝑧𝜑 → [𝑦 / 𝑥]𝜑)
76alimi 1443 . . . . 5 (∀𝑧[𝑦 / 𝑥]∀𝑧𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)
87a1i 9 . . . 4 (∀𝑧𝑥(𝜑 → ∀𝑧𝜑) → (∀𝑧[𝑦 / 𝑥]∀𝑧𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑))
94, 8imim12d 74 . . 3 (∀𝑧𝑥(𝜑 → ∀𝑧𝜑) → (([𝑦 / 𝑥]∀𝑧𝜑 → ∀𝑧[𝑦 / 𝑥]∀𝑧𝜑) → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)))
109a7s 1442 . 2 (∀𝑥𝑧(𝜑 → ∀𝑧𝜑) → (([𝑦 / 𝑥]∀𝑧𝜑 → ∀𝑧[𝑦 / 𝑥]∀𝑧𝜑) → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)))
112, 10syl5 32 1 (∀𝑥𝑧(𝜑 → ∀𝑧𝜑) → (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1341  [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751
This theorem is referenced by:  nfsb4t  2002
  Copyright terms: Public domain W3C validator