| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hbsb4t | GIF version | ||
| Description: A variable not free remains so after substitution with a distinct variable (closed form of hbsb4 2063). (Contributed by NM, 7-Apr-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| hbsb4t | ⊢ (∀𝑥∀𝑧(𝜑 → ∀𝑧𝜑) → (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hba1 1586 | . . 3 ⊢ (∀𝑧𝜑 → ∀𝑧∀𝑧𝜑) | |
| 2 | 1 | hbsb4 2063 | . 2 ⊢ (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]∀𝑧𝜑 → ∀𝑧[𝑦 / 𝑥]∀𝑧𝜑)) |
| 3 | spsbim 1889 | . . . . 5 ⊢ (∀𝑥(𝜑 → ∀𝑧𝜑) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]∀𝑧𝜑)) | |
| 4 | 3 | sps 1583 | . . . 4 ⊢ (∀𝑧∀𝑥(𝜑 → ∀𝑧𝜑) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]∀𝑧𝜑)) |
| 5 | ax-4 1556 | . . . . . . 7 ⊢ (∀𝑧𝜑 → 𝜑) | |
| 6 | 5 | sbimi 1810 | . . . . . 6 ⊢ ([𝑦 / 𝑥]∀𝑧𝜑 → [𝑦 / 𝑥]𝜑) |
| 7 | 6 | alimi 1501 | . . . . 5 ⊢ (∀𝑧[𝑦 / 𝑥]∀𝑧𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑) |
| 8 | 7 | a1i 9 | . . . 4 ⊢ (∀𝑧∀𝑥(𝜑 → ∀𝑧𝜑) → (∀𝑧[𝑦 / 𝑥]∀𝑧𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)) |
| 9 | 4, 8 | imim12d 74 | . . 3 ⊢ (∀𝑧∀𝑥(𝜑 → ∀𝑧𝜑) → (([𝑦 / 𝑥]∀𝑧𝜑 → ∀𝑧[𝑦 / 𝑥]∀𝑧𝜑) → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑))) |
| 10 | 9 | a7s 1500 | . 2 ⊢ (∀𝑥∀𝑧(𝜑 → ∀𝑧𝜑) → (([𝑦 / 𝑥]∀𝑧𝜑 → ∀𝑧[𝑦 / 𝑥]∀𝑧𝜑) → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑))) |
| 11 | 2, 10 | syl5 32 | 1 ⊢ (∀𝑥∀𝑧(𝜑 → ∀𝑧𝜑) → (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1393 [wsb 1808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 |
| This theorem is referenced by: nfsb4t 2065 |
| Copyright terms: Public domain | W3C validator |