![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpgbir | GIF version |
Description: Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.) |
Ref | Expression |
---|---|
mpgbir.1 | ⊢ (𝜑 ↔ ∀𝑥𝜓) |
mpgbir.2 | ⊢ 𝜓 |
Ref | Expression |
---|---|
mpgbir | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpgbir.2 | . . 3 ⊢ 𝜓 | |
2 | 1 | ax-gen 1449 | . 2 ⊢ ∀𝑥𝜓 |
3 | mpgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥𝜓) | |
4 | 2, 3 | mpbir 146 | 1 ⊢ 𝜑 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∀wal 1351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1449 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: nfi 1462 cvjust 2172 eqriv 2174 abbi2i 2292 nfci 2309 abid2f 2345 rgen 2530 ssriv 3160 ss2abi 3228 nel0 3445 ssmin 3864 intab 3874 iunab 3934 iinab 3949 sndisj 4000 disjxsn 4002 intid 4225 fr0 4352 zfregfr 4574 peano1 4594 relssi 4718 dm0 4842 dmi 4843 funopabeq 5253 isarep2 5304 fvopab3ig 5591 opabex 5741 acexmid 5874 finomni 7138 dfuzi 9363 fzodisj 10178 fzouzdisj 10180 bdelir 14602 |
Copyright terms: Public domain | W3C validator |