| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mpgbir | GIF version | ||
| Description: Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.) | 
| Ref | Expression | 
|---|---|
| mpgbir.1 | ⊢ (𝜑 ↔ ∀𝑥𝜓) | 
| mpgbir.2 | ⊢ 𝜓 | 
| Ref | Expression | 
|---|---|
| mpgbir | ⊢ 𝜑 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mpgbir.2 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | ax-gen 1463 | . 2 ⊢ ∀𝑥𝜓 | 
| 3 | mpgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥𝜓) | |
| 4 | 2, 3 | mpbir 146 | 1 ⊢ 𝜑 | 
| Colors of variables: wff set class | 
| Syntax hints: ↔ wb 105 ∀wal 1362 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: nfi 1476 cvjust 2191 eqriv 2193 abbi2i 2311 nfci 2329 abid2f 2365 rgen 2550 ssriv 3187 ss2abi 3255 nel0 3472 ssmin 3893 intab 3903 iunab 3963 iinab 3978 sndisj 4029 disjxsn 4031 intid 4257 fr0 4386 zfregfr 4610 peano1 4630 relssi 4754 dm0 4880 dmi 4881 funopabeq 5294 isarep2 5345 fvopab3ig 5635 opabex 5786 acexmid 5921 finomni 7206 dfuzi 9436 fzodisj 10254 fzouzdisj 10256 bdelir 15493 | 
| Copyright terms: Public domain | W3C validator |