Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpgbir | GIF version |
Description: Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.) |
Ref | Expression |
---|---|
mpgbir.1 | ⊢ (𝜑 ↔ ∀𝑥𝜓) |
mpgbir.2 | ⊢ 𝜓 |
Ref | Expression |
---|---|
mpgbir | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpgbir.2 | . . 3 ⊢ 𝜓 | |
2 | 1 | ax-gen 1437 | . 2 ⊢ ∀𝑥𝜓 |
3 | mpgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥𝜓) | |
4 | 2, 3 | mpbir 145 | 1 ⊢ 𝜑 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∀wal 1341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1437 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: nfi 1450 cvjust 2160 eqriv 2162 abbi2i 2281 nfci 2298 abid2f 2334 rgen 2519 ssriv 3146 ss2abi 3214 nel0 3430 ssmin 3843 intab 3853 iunab 3912 iinab 3927 sndisj 3978 disjxsn 3980 intid 4202 fr0 4329 zfregfr 4551 peano1 4571 relssi 4695 dm0 4818 dmi 4819 funopabeq 5224 isarep2 5275 fvopab3ig 5560 opabex 5709 acexmid 5841 finomni 7104 dfuzi 9301 fzodisj 10113 fzouzdisj 10115 bdelir 13729 |
Copyright terms: Public domain | W3C validator |