Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpgbir | GIF version |
Description: Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.) |
Ref | Expression |
---|---|
mpgbir.1 | ⊢ (𝜑 ↔ ∀𝑥𝜓) |
mpgbir.2 | ⊢ 𝜓 |
Ref | Expression |
---|---|
mpgbir | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpgbir.2 | . . 3 ⊢ 𝜓 | |
2 | 1 | ax-gen 1429 | . 2 ⊢ ∀𝑥𝜓 |
3 | mpgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥𝜓) | |
4 | 2, 3 | mpbir 145 | 1 ⊢ 𝜑 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∀wal 1333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1429 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: nfi 1442 cvjust 2152 eqriv 2154 abbi2i 2272 nfci 2289 abid2f 2325 rgen 2510 ssriv 3132 ss2abi 3200 nel0 3415 ssmin 3826 intab 3836 iunab 3895 iinab 3910 sndisj 3961 disjxsn 3963 intid 4183 fr0 4310 zfregfr 4531 peano1 4551 relssi 4674 dm0 4797 dmi 4798 funopabeq 5203 isarep2 5254 fvopab3ig 5539 opabex 5688 acexmid 5817 finomni 7066 dfuzi 9257 fzodisj 10059 fzouzdisj 10061 bdelir 13382 |
Copyright terms: Public domain | W3C validator |