![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpgbir | GIF version |
Description: Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.) |
Ref | Expression |
---|---|
mpgbir.1 | ⊢ (𝜑 ↔ ∀𝑥𝜓) |
mpgbir.2 | ⊢ 𝜓 |
Ref | Expression |
---|---|
mpgbir | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpgbir.2 | . . 3 ⊢ 𝜓 | |
2 | 1 | ax-gen 1460 | . 2 ⊢ ∀𝑥𝜓 |
3 | mpgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥𝜓) | |
4 | 2, 3 | mpbir 146 | 1 ⊢ 𝜑 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∀wal 1362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1460 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: nfi 1473 cvjust 2188 eqriv 2190 abbi2i 2308 nfci 2326 abid2f 2362 rgen 2547 ssriv 3184 ss2abi 3252 nel0 3469 ssmin 3890 intab 3900 iunab 3960 iinab 3975 sndisj 4026 disjxsn 4028 intid 4254 fr0 4383 zfregfr 4607 peano1 4627 relssi 4751 dm0 4877 dmi 4878 funopabeq 5291 isarep2 5342 fvopab3ig 5632 opabex 5783 acexmid 5918 finomni 7201 dfuzi 9430 fzodisj 10248 fzouzdisj 10250 bdelir 15409 |
Copyright terms: Public domain | W3C validator |