ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpgbir GIF version

Theorem mpgbir 1464
Description: Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.)
Hypotheses
Ref Expression
mpgbir.1 (𝜑 ↔ ∀𝑥𝜓)
mpgbir.2 𝜓
Assertion
Ref Expression
mpgbir 𝜑

Proof of Theorem mpgbir
StepHypRef Expression
1 mpgbir.2 . . 3 𝜓
21ax-gen 1460 . 2 𝑥𝜓
3 mpgbir.1 . 2 (𝜑 ↔ ∀𝑥𝜓)
42, 3mpbir 146 1 𝜑
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1460
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  nfi  1473  cvjust  2188  eqriv  2190  abbi2i  2308  nfci  2326  abid2f  2362  rgen  2547  ssriv  3184  ss2abi  3252  nel0  3469  ssmin  3890  intab  3900  iunab  3960  iinab  3975  sndisj  4026  disjxsn  4028  intid  4254  fr0  4383  zfregfr  4607  peano1  4627  relssi  4751  dm0  4877  dmi  4878  funopabeq  5291  isarep2  5342  fvopab3ig  5632  opabex  5783  acexmid  5918  finomni  7201  dfuzi  9430  fzodisj  10248  fzouzdisj  10250  bdelir  15409
  Copyright terms: Public domain W3C validator