ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpgbir GIF version

Theorem mpgbir 1467
Description: Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.)
Hypotheses
Ref Expression
mpgbir.1 (𝜑 ↔ ∀𝑥𝜓)
mpgbir.2 𝜓
Assertion
Ref Expression
mpgbir 𝜑

Proof of Theorem mpgbir
StepHypRef Expression
1 mpgbir.2 . . 3 𝜓
21ax-gen 1463 . 2 𝑥𝜓
3 mpgbir.1 . 2 (𝜑 ↔ ∀𝑥𝜓)
42, 3mpbir 146 1 𝜑
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1463
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  nfi  1476  cvjust  2191  eqriv  2193  abbi2i  2311  nfci  2329  abid2f  2365  rgen  2550  ssriv  3187  ss2abi  3255  nel0  3472  ssmin  3893  intab  3903  iunab  3963  iinab  3978  sndisj  4029  disjxsn  4031  intid  4257  fr0  4386  zfregfr  4610  peano1  4630  relssi  4754  dm0  4880  dmi  4881  funopabeq  5294  isarep2  5345  fvopab3ig  5635  opabex  5786  acexmid  5921  finomni  7206  dfuzi  9436  fzodisj  10254  fzouzdisj  10256  bdelir  15493
  Copyright terms: Public domain W3C validator