| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpgbir | GIF version | ||
| Description: Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.) |
| Ref | Expression |
|---|---|
| mpgbir.1 | ⊢ (𝜑 ↔ ∀𝑥𝜓) |
| mpgbir.2 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| mpgbir | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpgbir.2 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | ax-gen 1495 | . 2 ⊢ ∀𝑥𝜓 |
| 3 | mpgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥𝜓) | |
| 4 | 2, 3 | mpbir 146 | 1 ⊢ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1393 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1495 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: nfi 1508 cvjust 2224 eqriv 2226 abbi2i 2344 nfci 2362 abid2f 2398 rgen 2583 ssriv 3228 ss2abi 3296 nel0 3513 ssmin 3941 intab 3951 iunab 4011 iinab 4026 sndisj 4078 disjxsn 4080 intid 4309 fr0 4441 zfregfr 4665 peano1 4685 relssi 4809 dm0 4936 dmi 4937 funopabeq 5353 isarep2 5407 fvopab3ig 5707 opabex 5862 acexmid 5999 finomni 7303 dfuzi 9553 fzodisj 10372 fzouzdisj 10374 fzodisjsn 10376 bdelir 16168 |
| Copyright terms: Public domain | W3C validator |