| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpgbir | GIF version | ||
| Description: Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.) |
| Ref | Expression |
|---|---|
| mpgbir.1 | ⊢ (𝜑 ↔ ∀𝑥𝜓) |
| mpgbir.2 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| mpgbir | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpgbir.2 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | ax-gen 1471 | . 2 ⊢ ∀𝑥𝜓 |
| 3 | mpgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥𝜓) | |
| 4 | 2, 3 | mpbir 146 | 1 ⊢ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1370 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1471 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: nfi 1484 cvjust 2199 eqriv 2201 abbi2i 2319 nfci 2337 abid2f 2373 rgen 2558 ssriv 3196 ss2abi 3264 nel0 3481 ssmin 3903 intab 3913 iunab 3973 iinab 3988 sndisj 4039 disjxsn 4041 intid 4267 fr0 4396 zfregfr 4620 peano1 4640 relssi 4764 dm0 4890 dmi 4891 funopabeq 5304 isarep2 5355 fvopab3ig 5647 opabex 5798 acexmid 5933 finomni 7224 dfuzi 9465 fzodisj 10283 fzouzdisj 10285 bdelir 15647 |
| Copyright terms: Public domain | W3C validator |