![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpgbir | GIF version |
Description: Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.) |
Ref | Expression |
---|---|
mpgbir.1 | ⊢ (𝜑 ↔ ∀𝑥𝜓) |
mpgbir.2 | ⊢ 𝜓 |
Ref | Expression |
---|---|
mpgbir | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpgbir.2 | . . 3 ⊢ 𝜓 | |
2 | 1 | ax-gen 1384 | . 2 ⊢ ∀𝑥𝜓 |
3 | mpgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥𝜓) | |
4 | 2, 3 | mpbir 145 | 1 ⊢ 𝜑 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∀wal 1288 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1384 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: nfi 1397 cvjust 2084 eqriv 2086 abbi2i 2203 nfci 2219 abid2f 2254 rgen 2429 ssriv 3030 ss2abi 3094 nel0 3308 ssmin 3713 intab 3723 iunab 3782 iinab 3797 sndisj 3847 disjxsn 3849 intid 4060 fr0 4187 zfregfr 4402 peano1 4422 relssi 4542 dm0 4663 dmi 4664 funopabeq 5063 isarep2 5114 fvopab3ig 5391 opabex 5535 acexmid 5665 finomni 6857 dfuzi 8917 fzodisj 9650 fzouzdisj 9652 bdelir 12011 |
Copyright terms: Public domain | W3C validator |