| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpgbir | GIF version | ||
| Description: Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.) |
| Ref | Expression |
|---|---|
| mpgbir.1 | ⊢ (𝜑 ↔ ∀𝑥𝜓) |
| mpgbir.2 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| mpgbir | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpgbir.2 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | ax-gen 1473 | . 2 ⊢ ∀𝑥𝜓 |
| 3 | mpgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥𝜓) | |
| 4 | 2, 3 | mpbir 146 | 1 ⊢ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1473 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: nfi 1486 cvjust 2201 eqriv 2203 abbi2i 2321 nfci 2339 abid2f 2375 rgen 2560 ssriv 3201 ss2abi 3269 nel0 3486 ssmin 3910 intab 3920 iunab 3980 iinab 3995 sndisj 4047 disjxsn 4049 intid 4276 fr0 4406 zfregfr 4630 peano1 4650 relssi 4774 dm0 4901 dmi 4902 funopabeq 5316 isarep2 5370 fvopab3ig 5666 opabex 5821 acexmid 5956 finomni 7257 dfuzi 9503 fzodisj 10322 fzouzdisj 10324 fzodisjsn 10326 bdelir 15921 |
| Copyright terms: Public domain | W3C validator |