| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpgbir | GIF version | ||
| Description: Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.) |
| Ref | Expression |
|---|---|
| mpgbir.1 | ⊢ (𝜑 ↔ ∀𝑥𝜓) |
| mpgbir.2 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| mpgbir | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpgbir.2 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | ax-gen 1463 | . 2 ⊢ ∀𝑥𝜓 |
| 3 | mpgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥𝜓) | |
| 4 | 2, 3 | mpbir 146 | 1 ⊢ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: nfi 1476 cvjust 2191 eqriv 2193 abbi2i 2311 nfci 2329 abid2f 2365 rgen 2550 ssriv 3188 ss2abi 3256 nel0 3473 ssmin 3894 intab 3904 iunab 3964 iinab 3979 sndisj 4030 disjxsn 4032 intid 4258 fr0 4387 zfregfr 4611 peano1 4631 relssi 4755 dm0 4881 dmi 4882 funopabeq 5295 isarep2 5346 fvopab3ig 5638 opabex 5789 acexmid 5924 finomni 7215 dfuzi 9453 fzodisj 10271 fzouzdisj 10273 bdelir 15577 |
| Copyright terms: Public domain | W3C validator |