![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpgbir | GIF version |
Description: Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.) |
Ref | Expression |
---|---|
mpgbir.1 | ⊢ (𝜑 ↔ ∀𝑥𝜓) |
mpgbir.2 | ⊢ 𝜓 |
Ref | Expression |
---|---|
mpgbir | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpgbir.2 | . . 3 ⊢ 𝜓 | |
2 | 1 | ax-gen 1460 | . 2 ⊢ ∀𝑥𝜓 |
3 | mpgbir.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥𝜓) | |
4 | 2, 3 | mpbir 146 | 1 ⊢ 𝜑 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∀wal 1362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1460 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: nfi 1473 cvjust 2188 eqriv 2190 abbi2i 2308 nfci 2326 abid2f 2362 rgen 2547 ssriv 3183 ss2abi 3251 nel0 3468 ssmin 3889 intab 3899 iunab 3959 iinab 3974 sndisj 4025 disjxsn 4027 intid 4253 fr0 4382 zfregfr 4606 peano1 4626 relssi 4750 dm0 4876 dmi 4877 funopabeq 5290 isarep2 5341 fvopab3ig 5631 opabex 5782 acexmid 5917 finomni 7199 dfuzi 9427 fzodisj 10245 fzouzdisj 10247 bdelir 15339 |
Copyright terms: Public domain | W3C validator |