ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ad4ant14 GIF version

Theorem ad4ant14 506
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad4ant2.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad4ant14 ((((𝜑𝜃) ∧ 𝜏) ∧ 𝜓) → 𝜒)

Proof of Theorem ad4ant14
StepHypRef Expression
1 ad4ant2.1 . . 3 ((𝜑𝜓) → 𝜒)
21adantlr 469 . 2 (((𝜑𝜃) ∧ 𝜓) → 𝜒)
32adantlr 469 1 ((((𝜑𝜃) ∧ 𝜏) ∧ 𝜓) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem is referenced by:  ad5ant15  513  ad5ant25  516  prodmodclem2  11518  prodmodc  11519  zproddc  11520  fprod2d  11564  grprinvlem  12616
  Copyright terms: Public domain W3C validator