ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ad4ant14 GIF version

Theorem ad4ant14 514
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad4ant2.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad4ant14 ((((𝜑𝜃) ∧ 𝜏) ∧ 𝜓) → 𝜒)

Proof of Theorem ad4ant14
StepHypRef Expression
1 ad4ant2.1 . . 3 ((𝜑𝜓) → 𝜒)
21adantlr 477 . 2 (((𝜑𝜃) ∧ 𝜓) → 𝜒)
32adantlr 477 1 ((((𝜑𝜃) ∧ 𝜏) ∧ 𝜓) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  ad5ant15  521  ad5ant25  524  seqfeq4g  10605  prodmodclem2  11723  prodmodc  11724  zproddc  11725  fprod2d  11769  gcdsupex  12097  gcdsupcl  12098  grpinvalem  12971  gsumwsubmcl  13071  gsumwmhm  13073  subrngintm  13711  plyco  14937  gausslemma2dlem1f1o  15217
  Copyright terms: Public domain W3C validator