ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ad4ant14 GIF version

Theorem ad4ant14 514
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad4ant2.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad4ant14 ((((𝜑𝜃) ∧ 𝜏) ∧ 𝜓) → 𝜒)

Proof of Theorem ad4ant14
StepHypRef Expression
1 ad4ant2.1 . . 3 ((𝜑𝜓) → 𝜒)
21adantlr 477 . 2 (((𝜑𝜃) ∧ 𝜓) → 𝜒)
32adantlr 477 1 ((((𝜑𝜃) ∧ 𝜏) ∧ 𝜓) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  ad5ant15  521  ad5ant25  524  seqfeq4g  10748  prodmodclem2  12083  prodmodc  12084  zproddc  12085  fprod2d  12129  gcdsupex  12473  gcdsupcl  12474  grpinvalem  13413  gsumwsubmcl  13524  gsumwmhm  13526  subrngintm  14170  plyco  15427  gausslemma2dlem1f1o  15733
  Copyright terms: Public domain W3C validator