ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ad4ant14 GIF version

Theorem ad4ant14 514
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad4ant2.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad4ant14 ((((𝜑𝜃) ∧ 𝜏) ∧ 𝜓) → 𝜒)

Proof of Theorem ad4ant14
StepHypRef Expression
1 ad4ant2.1 . . 3 ((𝜑𝜓) → 𝜒)
21adantlr 477 . 2 (((𝜑𝜃) ∧ 𝜓) → 𝜒)
32adantlr 477 1 ((((𝜑𝜃) ∧ 𝜏) ∧ 𝜓) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  ad5ant15  521  ad5ant25  524  seqfeq4g  10674  prodmodclem2  11830  prodmodc  11831  zproddc  11832  fprod2d  11876  gcdsupex  12220  gcdsupcl  12221  grpinvalem  13159  gsumwsubmcl  13270  gsumwmhm  13272  subrngintm  13916  plyco  15173  gausslemma2dlem1f1o  15479
  Copyright terms: Public domain W3C validator