| Step | Hyp | Ref
 | Expression | 
| 1 |   | simpll 527 | 
. . . . . . . . 9
⊢ (((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) → 𝐴 ⊆ (ℤ≥‘𝑚)) | 
| 2 |   | simprr 531 | 
. . . . . . . . 9
⊢ (((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) → seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) | 
| 3 | 1, 2 | jca 306 | 
. . . . . . . 8
⊢ (((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) → (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) | 
| 4 |   | nfcv 2339 | 
. . . . . . . . . . . 12
⊢
Ⅎ𝑖if(𝑘 ∈ 𝐴, 𝐵, 1) | 
| 5 |   | nfv 1542 | 
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘 𝑖 ∈ 𝐴 | 
| 6 |   | nfcsb1v 3117 | 
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘⦋𝑖 / 𝑘⦌𝐵 | 
| 7 |   | nfcv 2339 | 
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘1 | 
| 8 | 5, 6, 7 | nfif 3589 | 
. . . . . . . . . . . 12
⊢
Ⅎ𝑘if(𝑖 ∈ 𝐴, ⦋𝑖 / 𝑘⦌𝐵, 1) | 
| 9 |   | eleq1w 2257 | 
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑖 → (𝑘 ∈ 𝐴 ↔ 𝑖 ∈ 𝐴)) | 
| 10 |   | csbeq1a 3093 | 
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑖 → 𝐵 = ⦋𝑖 / 𝑘⦌𝐵) | 
| 11 | 9, 10 | ifbieq1d 3583 | 
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑖 → if(𝑘 ∈ 𝐴, 𝐵, 1) = if(𝑖 ∈ 𝐴, ⦋𝑖 / 𝑘⦌𝐵, 1)) | 
| 12 | 4, 8, 11 | cbvmpt 4128 | 
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) = (𝑖 ∈ ℤ ↦ if(𝑖 ∈ 𝐴, ⦋𝑖 / 𝑘⦌𝐵, 1)) | 
| 13 |   | simpll 527 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) → 𝜑) | 
| 14 |   | zprod.6 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | 
| 15 | 14 | ralrimiva 2570 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) | 
| 16 | 6 | nfel1 2350 | 
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘⦋𝑖 / 𝑘⦌𝐵 ∈ ℂ | 
| 17 | 10 | eleq1d 2265 | 
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑖 → (𝐵 ∈ ℂ ↔ ⦋𝑖 / 𝑘⦌𝐵 ∈ ℂ)) | 
| 18 | 16, 17 | rspc 2862 | 
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋𝑖 / 𝑘⦌𝐵 ∈ ℂ)) | 
| 19 | 15, 18 | syl5 32 | 
. . . . . . . . . . . 12
⊢ (𝑖 ∈ 𝐴 → (𝜑 → ⦋𝑖 / 𝑘⦌𝐵 ∈ ℂ)) | 
| 20 | 13, 19 | mpan9 281 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) ∧ 𝑖 ∈ 𝐴) → ⦋𝑖 / 𝑘⦌𝐵 ∈ ℂ) | 
| 21 |   | simplr 528 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) → 𝑚 ∈ ℤ) | 
| 22 |   | zprod.2 | 
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| 23 | 22 | ad2antrr 488 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) → 𝑀 ∈ ℤ) | 
| 24 |   | simpr 110 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) → 𝐴 ⊆ (ℤ≥‘𝑚)) | 
| 25 |   | zprod.4 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ⊆ 𝑍) | 
| 26 |   | zprod.1 | 
. . . . . . . . . . . . 13
⊢ 𝑍 =
(ℤ≥‘𝑀) | 
| 27 | 25, 26 | sseqtrdi 3231 | 
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) | 
| 28 | 27 | ad2antrr 488 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) → 𝐴 ⊆ (ℤ≥‘𝑀)) | 
| 29 |   | zproddc.dc | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑗 ∈ 𝑍 DECID 𝑗 ∈ 𝐴) | 
| 30 | 26 | raleqi 2697 | 
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑗 ∈
𝑍 DECID
𝑗 ∈ 𝐴 ↔ ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) | 
| 31 | 29, 30 | sylib 122 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) | 
| 32 |   | eleq1w 2257 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝑖 → (𝑗 ∈ 𝐴 ↔ 𝑖 ∈ 𝐴)) | 
| 33 | 32 | dcbid 839 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝑖 → (DECID 𝑗 ∈ 𝐴 ↔ DECID 𝑖 ∈ 𝐴)) | 
| 34 | 33 | cbvralv 2729 | 
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴 ↔ ∀𝑖 ∈ (ℤ≥‘𝑀)DECID 𝑖 ∈ 𝐴) | 
| 35 | 31, 34 | sylib 122 | 
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑖 ∈ (ℤ≥‘𝑀)DECID 𝑖 ∈ 𝐴) | 
| 36 | 35 | r19.21bi 2585 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → DECID
𝑖 ∈ 𝐴) | 
| 37 | 36 | adantlr 477 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → DECID
𝑖 ∈ 𝐴) | 
| 38 | 37 | adantlr 477 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → DECID
𝑖 ∈ 𝐴) | 
| 39 | 38 | adantlr 477 | 
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆
(ℤ≥‘𝑚)) ∧ 𝑖 ∈ (ℤ≥‘𝑚)) ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → DECID
𝑖 ∈ 𝐴) | 
| 40 |   | simp-4l 541 | 
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆
(ℤ≥‘𝑚)) ∧ 𝑖 ∈ (ℤ≥‘𝑚)) ∧ ¬ 𝑖 ∈
(ℤ≥‘𝑀)) → 𝜑) | 
| 41 |   | simpr 110 | 
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆
(ℤ≥‘𝑚)) ∧ 𝑖 ∈ (ℤ≥‘𝑚)) ∧ ¬ 𝑖 ∈
(ℤ≥‘𝑀)) → ¬ 𝑖 ∈ (ℤ≥‘𝑀)) | 
| 42 | 27 | ssneld 3185 | 
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (¬ 𝑖 ∈ (ℤ≥‘𝑀) → ¬ 𝑖 ∈ 𝐴)) | 
| 43 | 40, 41, 42 | sylc 62 | 
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆
(ℤ≥‘𝑚)) ∧ 𝑖 ∈ (ℤ≥‘𝑚)) ∧ ¬ 𝑖 ∈
(ℤ≥‘𝑀)) → ¬ 𝑖 ∈ 𝐴) | 
| 44 | 43 | olcd 735 | 
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆
(ℤ≥‘𝑚)) ∧ 𝑖 ∈ (ℤ≥‘𝑚)) ∧ ¬ 𝑖 ∈
(ℤ≥‘𝑀)) → (𝑖 ∈ 𝐴 ∨ ¬ 𝑖 ∈ 𝐴)) | 
| 45 |   | df-dc 836 | 
. . . . . . . . . . . . 13
⊢
(DECID 𝑖 ∈ 𝐴 ↔ (𝑖 ∈ 𝐴 ∨ ¬ 𝑖 ∈ 𝐴)) | 
| 46 | 44, 45 | sylibr 134 | 
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆
(ℤ≥‘𝑚)) ∧ 𝑖 ∈ (ℤ≥‘𝑚)) ∧ ¬ 𝑖 ∈
(ℤ≥‘𝑀)) → DECID 𝑖 ∈ 𝐴) | 
| 47 |   | eluzelz 9610 | 
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈
(ℤ≥‘𝑚) → 𝑖 ∈ ℤ) | 
| 48 |   | eluzdc 9684 | 
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ) →
DECID 𝑖
∈ (ℤ≥‘𝑀)) | 
| 49 | 23, 47, 48 | syl2an 289 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) ∧ 𝑖 ∈ (ℤ≥‘𝑚)) → DECID
𝑖 ∈
(ℤ≥‘𝑀)) | 
| 50 |   | exmiddc 837 | 
. . . . . . . . . . . . 13
⊢
(DECID 𝑖 ∈ (ℤ≥‘𝑀) → (𝑖 ∈ (ℤ≥‘𝑀) ∨ ¬ 𝑖 ∈ (ℤ≥‘𝑀))) | 
| 51 | 49, 50 | syl 14 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) ∧ 𝑖 ∈ (ℤ≥‘𝑚)) → (𝑖 ∈ (ℤ≥‘𝑀) ∨ ¬ 𝑖 ∈ (ℤ≥‘𝑀))) | 
| 52 | 39, 46, 51 | mpjaodan 799 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) ∧ 𝑖 ∈ (ℤ≥‘𝑚)) → DECID
𝑖 ∈ 𝐴) | 
| 53 | 12, 20, 21, 23, 24, 28, 52, 38 | prodrbdc 11739 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) → (seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥 ↔ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) | 
| 54 | 53 | biimpd 144 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) → (seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥 → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) | 
| 55 | 54 | expimpd 363 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) | 
| 56 | 3, 55 | syl5 32 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → (((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) | 
| 57 | 56 | rexlimdva 2614 | 
. . . . . 6
⊢ (𝜑 → (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) | 
| 58 |   | uzssz 9621 | 
. . . . . . . . . . . . . 14
⊢
(ℤ≥‘𝑀) ⊆ ℤ | 
| 59 | 27, 58 | sstrdi 3195 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ⊆ ℤ) | 
| 60 | 59 | ad2antrr 488 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 𝐴 ⊆ ℤ) | 
| 61 |   | 1zzd 9353 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 1 ∈
ℤ) | 
| 62 |   | nnz 9345 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℤ) | 
| 63 | 62 | adantl 277 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℤ) | 
| 64 | 63 | adantr 276 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 𝑚 ∈ ℤ) | 
| 65 | 61, 64 | fzfigd 10523 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (1...𝑚) ∈ Fin) | 
| 66 |   | simpr 110 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 𝑓:(1...𝑚)–1-1-onto→𝐴) | 
| 67 |   | f1oeng 6816 | 
. . . . . . . . . . . . . . 15
⊢
(((1...𝑚) ∈ Fin
∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (1...𝑚) ≈ 𝐴) | 
| 68 | 65, 66, 67 | syl2anc 411 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (1...𝑚) ≈ 𝐴) | 
| 69 | 68 | ensymd 6842 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 𝐴 ≈ (1...𝑚)) | 
| 70 |   | enfii 6935 | 
. . . . . . . . . . . . 13
⊢
(((1...𝑚) ∈ Fin
∧ 𝐴 ≈ (1...𝑚)) → 𝐴 ∈ Fin) | 
| 71 | 65, 69, 70 | syl2anc 411 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 𝐴 ∈ Fin) | 
| 72 |   | zfz1iso 10933 | 
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴)) | 
| 73 | 60, 71, 72 | syl2anc 411 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴)) | 
| 74 |   | simpll 527 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝜑) | 
| 75 | 74, 19 | mpan9 281 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑖 ∈ 𝐴) → ⦋𝑖 / 𝑘⦌𝐵 ∈ ℂ) | 
| 76 |   | breq1 4036 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑗 → (𝑛 ≤ (♯‘𝐴) ↔ 𝑗 ≤ (♯‘𝐴))) | 
| 77 |   | fveq2 5558 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑗 → (𝑓‘𝑛) = (𝑓‘𝑗)) | 
| 78 | 77 | csbeq1d 3091 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑗 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑗) / 𝑘⦌𝐵) | 
| 79 | 76, 78 | ifbieq1d 3583 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑗 → if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1) = if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑘⦌𝐵, 1)) | 
| 80 |   | csbcow 3095 | 
. . . . . . . . . . . . . . . . . 18
⊢
⦋(𝑓‘𝑗) / 𝑖⦌⦋𝑖 / 𝑘⦌𝐵 = ⦋(𝑓‘𝑗) / 𝑘⦌𝐵 | 
| 81 |   | ifeq1 3564 | 
. . . . . . . . . . . . . . . . . 18
⊢
(⦋(𝑓‘𝑗) / 𝑖⦌⦋𝑖 / 𝑘⦌𝐵 = ⦋(𝑓‘𝑗) / 𝑘⦌𝐵 → if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑖⦌⦋𝑖 / 𝑘⦌𝐵, 1) = if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑘⦌𝐵, 1)) | 
| 82 | 80, 81 | ax-mp 5 | 
. . . . . . . . . . . . . . . . 17
⊢ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑖⦌⦋𝑖 / 𝑘⦌𝐵, 1) = if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑘⦌𝐵, 1) | 
| 83 | 79, 82 | eqtr4di 2247 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑗 → if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1) = if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑖⦌⦋𝑖 / 𝑘⦌𝐵, 1)) | 
| 84 | 83 | cbvmptv 4129 | 
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑖⦌⦋𝑖 / 𝑘⦌𝐵, 1)) | 
| 85 |   | eqid 2196 | 
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑖⦌⦋𝑖 / 𝑘⦌𝐵, 1)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑖⦌⦋𝑖 / 𝑘⦌𝐵, 1)) | 
| 86 | 36 | ad4ant14 514 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑖 ∈ (ℤ≥‘𝑀)) → DECID
𝑖 ∈ 𝐴) | 
| 87 |   | simplr 528 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑚 ∈ ℕ) | 
| 88 | 22 | ad2antrr 488 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑀 ∈ ℤ) | 
| 89 | 27 | ad2antrr 488 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝐴 ⊆ (ℤ≥‘𝑀)) | 
| 90 |   | simprl 529 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑓:(1...𝑚)–1-1-onto→𝐴) | 
| 91 |   | simprr 531 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴)) | 
| 92 | 12, 75, 84, 85, 86, 87, 88, 89, 90, 91 | prodmodclem2a 11741 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) | 
| 93 | 65 | adantrr 479 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → (1...𝑚) ∈ Fin) | 
| 94 | 93, 90 | fihasheqf1od 10881 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → (♯‘(1...𝑚)) = (♯‘𝐴)) | 
| 95 | 87 | nnnn0d 9302 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑚 ∈ ℕ0) | 
| 96 |   | hashfz1 10875 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 ∈ ℕ0
→ (♯‘(1...𝑚)) = 𝑚) | 
| 97 | 95, 96 | syl 14 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → (♯‘(1...𝑚)) = 𝑚) | 
| 98 | 94, 97 | eqtr3d 2231 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → (♯‘𝐴) = 𝑚) | 
| 99 | 98 | breq2d 4045 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → (𝑛 ≤ (♯‘𝐴) ↔ 𝑛 ≤ 𝑚)) | 
| 100 | 99 | ifbid 3582 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1) = if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)) | 
| 101 | 100 | mpteq2dv 4124 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1))) | 
| 102 | 101 | seqeq3d 10547 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1))) = seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))) | 
| 103 | 102 | fveq1d 5560 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) | 
| 104 | 92, 103 | breqtrd 4059 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) | 
| 105 | 104 | expr 375 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) | 
| 106 | 105 | exlimdv 1833 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) | 
| 107 | 73, 106 | mpd 13 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) | 
| 108 |   | breq2 4037 | 
. . . . . . . . . 10
⊢ (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚) → (seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥 ↔ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) | 
| 109 | 107, 108 | syl5ibrcom 157 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) | 
| 110 | 109 | expimpd 363 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) | 
| 111 | 110 | exlimdv 1833 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) | 
| 112 | 111 | rexlimdva 2614 | 
. . . . . 6
⊢ (𝜑 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) | 
| 113 | 57, 112 | jaod 718 | 
. . . . 5
⊢ (𝜑 → ((∃𝑚 ∈ ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) | 
| 114 | 22 | adantr 276 | 
. . . . . . . 8
⊢ ((𝜑 ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) → 𝑀 ∈ ℤ) | 
| 115 | 27 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) → 𝐴 ⊆ (ℤ≥‘𝑀)) | 
| 116 | 31 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) → ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) | 
| 117 | 115, 116 | jca 306 | 
. . . . . . . 8
⊢ ((𝜑 ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) → (𝐴 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴)) | 
| 118 |   | zproddc.3 | 
. . . . . . . . . . 11
⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) | 
| 119 | 26 | eleq2i 2263 | 
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ 𝑍 ↔ 𝑛 ∈ (ℤ≥‘𝑀)) | 
| 120 |   | eluzelz 9610 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → 𝑛 ∈ ℤ) | 
| 121 | 120 | adantl 277 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑛 ∈ ℤ) | 
| 122 |   | simpr 110 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑝 ∈ (ℤ≥‘𝑛)) → 𝑝 ∈ (ℤ≥‘𝑛)) | 
| 123 |   | simplr 528 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑝 ∈ (ℤ≥‘𝑛)) → 𝑛 ∈ (ℤ≥‘𝑀)) | 
| 124 |   | uztrn 9618 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑝 ∈
(ℤ≥‘𝑛) ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑝 ∈ (ℤ≥‘𝑀)) | 
| 125 | 122, 123,
124 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑝 ∈ (ℤ≥‘𝑛)) → 𝑝 ∈ (ℤ≥‘𝑀)) | 
| 126 | 125, 26 | eleqtrrdi 2290 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑝 ∈ (ℤ≥‘𝑛)) → 𝑝 ∈ 𝑍) | 
| 127 |   | zprod.5 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 1)) | 
| 128 | 127 | ralrimiva 2570 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 1)) | 
| 129 | 128 | ad2antrr 488 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑝 ∈ (ℤ≥‘𝑛)) → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 1)) | 
| 130 |   | nfv 1542 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘 𝑝 ∈ 𝐴 | 
| 131 |   | nfcsb1v 3117 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘⦋𝑝 / 𝑘⦌𝐵 | 
| 132 | 130, 131,
7 | nfif 3589 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘if(𝑝 ∈ 𝐴, ⦋𝑝 / 𝑘⦌𝐵, 1) | 
| 133 | 132 | nfeq2 2351 | 
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘(𝐹‘𝑝) = if(𝑝 ∈ 𝐴, ⦋𝑝 / 𝑘⦌𝐵, 1) | 
| 134 |   | fveq2 5558 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑝 → (𝐹‘𝑘) = (𝐹‘𝑝)) | 
| 135 |   | eleq1w 2257 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 𝑝 → (𝑘 ∈ 𝐴 ↔ 𝑝 ∈ 𝐴)) | 
| 136 |   | csbeq1a 3093 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 𝑝 → 𝐵 = ⦋𝑝 / 𝑘⦌𝐵) | 
| 137 | 135, 136 | ifbieq1d 3583 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑝 → if(𝑘 ∈ 𝐴, 𝐵, 1) = if(𝑝 ∈ 𝐴, ⦋𝑝 / 𝑘⦌𝐵, 1)) | 
| 138 | 134, 137 | eqeq12d 2211 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑝 → ((𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 1) ↔ (𝐹‘𝑝) = if(𝑝 ∈ 𝐴, ⦋𝑝 / 𝑘⦌𝐵, 1))) | 
| 139 | 133, 138 | rspc 2862 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 ∈ 𝑍 → (∀𝑘 ∈ 𝑍 (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 1) → (𝐹‘𝑝) = if(𝑝 ∈ 𝐴, ⦋𝑝 / 𝑘⦌𝐵, 1))) | 
| 140 | 126, 129,
139 | sylc 62 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑝 ∈ (ℤ≥‘𝑛)) → (𝐹‘𝑝) = if(𝑝 ∈ 𝐴, ⦋𝑝 / 𝑘⦌𝐵, 1)) | 
| 141 |   | simpr 110 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑝 ∈ (ℤ≥‘𝑛)) ∧ 𝑝 ∈ 𝐴) → 𝑝 ∈ 𝐴) | 
| 142 | 15 | ad3antrrr 492 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑝 ∈ (ℤ≥‘𝑛)) ∧ 𝑝 ∈ 𝐴) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) | 
| 143 | 131 | nfel1 2350 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘⦋𝑝 / 𝑘⦌𝐵 ∈ ℂ | 
| 144 | 136 | eleq1d 2265 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑝 → (𝐵 ∈ ℂ ↔ ⦋𝑝 / 𝑘⦌𝐵 ∈ ℂ)) | 
| 145 | 143, 144 | rspc 2862 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑝 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋𝑝 / 𝑘⦌𝐵 ∈ ℂ)) | 
| 146 | 141, 142,
145 | sylc 62 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑝 ∈ (ℤ≥‘𝑛)) ∧ 𝑝 ∈ 𝐴) → ⦋𝑝 / 𝑘⦌𝐵 ∈ ℂ) | 
| 147 |   | 1cnd 8042 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑝 ∈ (ℤ≥‘𝑛)) ∧ ¬ 𝑝 ∈ 𝐴) → 1 ∈ ℂ) | 
| 148 |   | eleq1w 2257 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 𝑝 → (𝑗 ∈ 𝐴 ↔ 𝑝 ∈ 𝐴)) | 
| 149 | 148 | dcbid 839 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 𝑝 → (DECID 𝑗 ∈ 𝐴 ↔ DECID 𝑝 ∈ 𝐴)) | 
| 150 | 29 | ad2antrr 488 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑝 ∈ (ℤ≥‘𝑛)) → ∀𝑗 ∈ 𝑍 DECID 𝑗 ∈ 𝐴) | 
| 151 | 149, 150,
126 | rspcdva 2873 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑝 ∈ (ℤ≥‘𝑛)) → DECID
𝑝 ∈ 𝐴) | 
| 152 | 146, 147,
151 | ifcldadc 3590 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑝 ∈ (ℤ≥‘𝑛)) → if(𝑝 ∈ 𝐴, ⦋𝑝 / 𝑘⦌𝐵, 1) ∈ ℂ) | 
| 153 | 140, 152 | eqeltrd 2273 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑝 ∈ (ℤ≥‘𝑛)) → (𝐹‘𝑝) ∈ ℂ) | 
| 154 |   | simpr 110 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑟 ∈ (ℤ≥‘𝑛)) → 𝑟 ∈ (ℤ≥‘𝑛)) | 
| 155 |   | simplr 528 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑟 ∈ (ℤ≥‘𝑛)) → 𝑛 ∈ (ℤ≥‘𝑀)) | 
| 156 |   | uztrn 9618 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑟 ∈
(ℤ≥‘𝑛) ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑟 ∈ (ℤ≥‘𝑀)) | 
| 157 | 154, 155,
156 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑟 ∈ (ℤ≥‘𝑛)) → 𝑟 ∈ (ℤ≥‘𝑀)) | 
| 158 | 157, 26 | eleqtrrdi 2290 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑟 ∈ (ℤ≥‘𝑛)) → 𝑟 ∈ 𝑍) | 
| 159 | 128 | ad2antrr 488 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑟 ∈ (ℤ≥‘𝑛)) → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 1)) | 
| 160 |   | nfv 1542 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘 𝑟 ∈ 𝐴 | 
| 161 |   | nfcsb1v 3117 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘⦋𝑟 / 𝑘⦌𝐵 | 
| 162 | 160, 161,
7 | nfif 3589 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘if(𝑟 ∈ 𝐴, ⦋𝑟 / 𝑘⦌𝐵, 1) | 
| 163 | 162 | nfeq2 2351 | 
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘(𝐹‘𝑟) = if(𝑟 ∈ 𝐴, ⦋𝑟 / 𝑘⦌𝐵, 1) | 
| 164 |   | fveq2 5558 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑟 → (𝐹‘𝑘) = (𝐹‘𝑟)) | 
| 165 |   | eleq1w 2257 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 𝑟 → (𝑘 ∈ 𝐴 ↔ 𝑟 ∈ 𝐴)) | 
| 166 |   | csbeq1a 3093 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 𝑟 → 𝐵 = ⦋𝑟 / 𝑘⦌𝐵) | 
| 167 | 165, 166 | ifbieq1d 3583 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑟 → if(𝑘 ∈ 𝐴, 𝐵, 1) = if(𝑟 ∈ 𝐴, ⦋𝑟 / 𝑘⦌𝐵, 1)) | 
| 168 | 164, 167 | eqeq12d 2211 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑟 → ((𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 1) ↔ (𝐹‘𝑟) = if(𝑟 ∈ 𝐴, ⦋𝑟 / 𝑘⦌𝐵, 1))) | 
| 169 | 163, 168 | rspc 2862 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑟 ∈ 𝑍 → (∀𝑘 ∈ 𝑍 (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 1) → (𝐹‘𝑟) = if(𝑟 ∈ 𝐴, ⦋𝑟 / 𝑘⦌𝐵, 1))) | 
| 170 | 158, 159,
169 | sylc 62 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑟 ∈ (ℤ≥‘𝑛)) → (𝐹‘𝑟) = if(𝑟 ∈ 𝐴, ⦋𝑟 / 𝑘⦌𝐵, 1)) | 
| 171 | 58, 157 | sselid 3181 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑟 ∈ (ℤ≥‘𝑛)) → 𝑟 ∈ ℤ) | 
| 172 |   | simpr 110 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑟 ∈ (ℤ≥‘𝑛)) ∧ 𝑟 ∈ 𝐴) → 𝑟 ∈ 𝐴) | 
| 173 | 15 | ad3antrrr 492 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑟 ∈ (ℤ≥‘𝑛)) ∧ 𝑟 ∈ 𝐴) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) | 
| 174 | 161 | nfel1 2350 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘⦋𝑟 / 𝑘⦌𝐵 ∈ ℂ | 
| 175 | 166 | eleq1d 2265 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 𝑟 → (𝐵 ∈ ℂ ↔ ⦋𝑟 / 𝑘⦌𝐵 ∈ ℂ)) | 
| 176 | 174, 175 | rspc 2862 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑟 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋𝑟 / 𝑘⦌𝐵 ∈ ℂ)) | 
| 177 | 172, 173,
176 | sylc 62 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑟 ∈ (ℤ≥‘𝑛)) ∧ 𝑟 ∈ 𝐴) → ⦋𝑟 / 𝑘⦌𝐵 ∈ ℂ) | 
| 178 |   | 1cnd 8042 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑟 ∈ (ℤ≥‘𝑛)) ∧ ¬ 𝑟 ∈ 𝐴) → 1 ∈ ℂ) | 
| 179 |   | eleq1w 2257 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = 𝑟 → (𝑗 ∈ 𝐴 ↔ 𝑟 ∈ 𝐴)) | 
| 180 | 179 | dcbid 839 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 𝑟 → (DECID 𝑗 ∈ 𝐴 ↔ DECID 𝑟 ∈ 𝐴)) | 
| 181 | 29 | ad2antrr 488 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑟 ∈ (ℤ≥‘𝑛)) → ∀𝑗 ∈ 𝑍 DECID 𝑗 ∈ 𝐴) | 
| 182 | 180, 181,
158 | rspcdva 2873 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑟 ∈ (ℤ≥‘𝑛)) → DECID
𝑟 ∈ 𝐴) | 
| 183 | 177, 178,
182 | ifcldadc 3590 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑟 ∈ (ℤ≥‘𝑛)) → if(𝑟 ∈ 𝐴, ⦋𝑟 / 𝑘⦌𝐵, 1) ∈ ℂ) | 
| 184 |   | nfcv 2339 | 
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘𝑟 | 
| 185 |   | eqid 2196 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) | 
| 186 | 184, 162,
167, 185 | fvmptf 5654 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑟 ∈ ℤ ∧ if(𝑟 ∈ 𝐴, ⦋𝑟 / 𝑘⦌𝐵, 1) ∈ ℂ) → ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑟) = if(𝑟 ∈ 𝐴, ⦋𝑟 / 𝑘⦌𝐵, 1)) | 
| 187 | 171, 183,
186 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑟 ∈ (ℤ≥‘𝑛)) → ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑟) = if(𝑟 ∈ 𝐴, ⦋𝑟 / 𝑘⦌𝐵, 1)) | 
| 188 | 170, 187 | eqtr4d 2232 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑟 ∈ (ℤ≥‘𝑛)) → (𝐹‘𝑟) = ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑟)) | 
| 189 |   | mulcl 8006 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ) → (𝑝 · 𝑞) ∈ ℂ) | 
| 190 | 189 | adantl 277 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ (𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ)) → (𝑝 · 𝑞) ∈ ℂ) | 
| 191 | 121, 153,
188, 190 | seq3feq 10572 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → seq𝑛( · , 𝐹) = seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)))) | 
| 192 | 191 | breq1d 4043 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (seq𝑛( · , 𝐹) ⇝ 𝑦 ↔ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦)) | 
| 193 | 192 | anbi2d 464 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ (𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦))) | 
| 194 | 193 | exbidv 1839 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ ∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦))) | 
| 195 | 119, 194 | sylan2b 287 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ ∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦))) | 
| 196 | 195 | rexbidva 2494 | 
. . . . . . . . . . 11
⊢ (𝜑 → (∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦))) | 
| 197 | 118, 196 | mpbid 147 | 
. . . . . . . . . 10
⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦)) | 
| 198 | 26 | rexeqi 2698 | 
. . . . . . . . . 10
⊢
(∃𝑛 ∈
𝑍 ∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑛 ∈ (ℤ≥‘𝑀)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦)) | 
| 199 | 197, 198 | sylib 122 | 
. . . . . . . . 9
⊢ (𝜑 → ∃𝑛 ∈ (ℤ≥‘𝑀)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦)) | 
| 200 | 199 | anim1i 340 | 
. . . . . . . 8
⊢ ((𝜑 ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) → (∃𝑛 ∈ (ℤ≥‘𝑀)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) | 
| 201 |   | fveq2 5558 | 
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑀 → (ℤ≥‘𝑚) =
(ℤ≥‘𝑀)) | 
| 202 | 201 | sseq2d 3213 | 
. . . . . . . . . . 11
⊢ (𝑚 = 𝑀 → (𝐴 ⊆ (ℤ≥‘𝑚) ↔ 𝐴 ⊆ (ℤ≥‘𝑀))) | 
| 203 | 201 | raleqdv 2699 | 
. . . . . . . . . . 11
⊢ (𝑚 = 𝑀 → (∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ↔ ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴)) | 
| 204 | 202, 203 | anbi12d 473 | 
. . . . . . . . . 10
⊢ (𝑚 = 𝑀 → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ↔ (𝐴 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴))) | 
| 205 | 201 | rexeqdv 2700 | 
. . . . . . . . . . 11
⊢ (𝑚 = 𝑀 → (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑛 ∈ (ℤ≥‘𝑀)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦))) | 
| 206 |   | seqeq1 10542 | 
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑀 → seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) = seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)))) | 
| 207 | 206 | breq1d 4043 | 
. . . . . . . . . . 11
⊢ (𝑚 = 𝑀 → (seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥 ↔ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) | 
| 208 | 205, 207 | anbi12d 473 | 
. . . . . . . . . 10
⊢ (𝑚 = 𝑀 → ((∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ↔ (∃𝑛 ∈ (ℤ≥‘𝑀)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥))) | 
| 209 | 204, 208 | anbi12d 473 | 
. . . . . . . . 9
⊢ (𝑚 = 𝑀 → (((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ↔ ((𝐴 ⊆ (ℤ≥‘𝑀) ∧ ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑀)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)))) | 
| 210 | 209 | rspcev 2868 | 
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ ((𝐴 ⊆
(ℤ≥‘𝑀) ∧ ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑀)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥))) → ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥))) | 
| 211 | 114, 117,
200, 210 | syl12anc 1247 | 
. . . . . . 7
⊢ ((𝜑 ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) → ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥))) | 
| 212 | 211 | orcd 734 | 
. . . . . 6
⊢ ((𝜑 ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) → (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) | 
| 213 | 212 | ex 115 | 
. . . . 5
⊢ (𝜑 → (seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥 → (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))))) | 
| 214 | 113, 213 | impbid 129 | 
. . . 4
⊢ (𝜑 → ((∃𝑚 ∈ ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) ↔ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) | 
| 215 |   | eluzelz 9610 | 
. . . . . . . 8
⊢ (𝑝 ∈
(ℤ≥‘𝑀) → 𝑝 ∈ ℤ) | 
| 216 |   | simpr 110 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑝 ∈ (ℤ≥‘𝑀)) ∧ 𝑝 ∈ 𝐴) → 𝑝 ∈ 𝐴) | 
| 217 | 15 | ad2antrr 488 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑝 ∈ (ℤ≥‘𝑀)) ∧ 𝑝 ∈ 𝐴) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) | 
| 218 | 216, 217,
145 | sylc 62 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑝 ∈ (ℤ≥‘𝑀)) ∧ 𝑝 ∈ 𝐴) → ⦋𝑝 / 𝑘⦌𝐵 ∈ ℂ) | 
| 219 |   | 1cnd 8042 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑝 ∈ (ℤ≥‘𝑀)) ∧ ¬ 𝑝 ∈ 𝐴) → 1 ∈ ℂ) | 
| 220 | 29 | adantr 276 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ (ℤ≥‘𝑀)) → ∀𝑗 ∈ 𝑍 DECID 𝑗 ∈ 𝐴) | 
| 221 | 26 | eleq2i 2263 | 
. . . . . . . . . . . 12
⊢ (𝑝 ∈ 𝑍 ↔ 𝑝 ∈ (ℤ≥‘𝑀)) | 
| 222 | 221 | biimpri 133 | 
. . . . . . . . . . 11
⊢ (𝑝 ∈
(ℤ≥‘𝑀) → 𝑝 ∈ 𝑍) | 
| 223 | 222 | adantl 277 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ (ℤ≥‘𝑀)) → 𝑝 ∈ 𝑍) | 
| 224 | 149, 220,
223 | rspcdva 2873 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ (ℤ≥‘𝑀)) → DECID
𝑝 ∈ 𝐴) | 
| 225 | 218, 219,
224 | ifcldadc 3590 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ (ℤ≥‘𝑀)) → if(𝑝 ∈ 𝐴, ⦋𝑝 / 𝑘⦌𝐵, 1) ∈ ℂ) | 
| 226 |   | nfcv 2339 | 
. . . . . . . . 9
⊢
Ⅎ𝑘𝑝 | 
| 227 | 226, 132,
137, 185 | fvmptf 5654 | 
. . . . . . . 8
⊢ ((𝑝 ∈ ℤ ∧ if(𝑝 ∈ 𝐴, ⦋𝑝 / 𝑘⦌𝐵, 1) ∈ ℂ) → ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑝) = if(𝑝 ∈ 𝐴, ⦋𝑝 / 𝑘⦌𝐵, 1)) | 
| 228 | 215, 225,
227 | syl2an2 594 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑝) = if(𝑝 ∈ 𝐴, ⦋𝑝 / 𝑘⦌𝐵, 1)) | 
| 229 | 228, 225 | eqeltrd 2273 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑝) ∈ ℂ) | 
| 230 |   | eluzelz 9610 | 
. . . . . . . 8
⊢ (𝑟 ∈
(ℤ≥‘𝑀) → 𝑟 ∈ ℤ) | 
| 231 |   | simpr 110 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ (ℤ≥‘𝑀)) ∧ 𝑟 ∈ 𝐴) → 𝑟 ∈ 𝐴) | 
| 232 | 15 | ad2antrr 488 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ (ℤ≥‘𝑀)) ∧ 𝑟 ∈ 𝐴) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) | 
| 233 | 231, 232,
176 | sylc 62 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ (ℤ≥‘𝑀)) ∧ 𝑟 ∈ 𝐴) → ⦋𝑟 / 𝑘⦌𝐵 ∈ ℂ) | 
| 234 |   | 1cnd 8042 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ (ℤ≥‘𝑀)) ∧ ¬ 𝑟 ∈ 𝐴) → 1 ∈ ℂ) | 
| 235 | 29 | adantr 276 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑟 ∈ (ℤ≥‘𝑀)) → ∀𝑗 ∈ 𝑍 DECID 𝑗 ∈ 𝐴) | 
| 236 | 26 | eleq2i 2263 | 
. . . . . . . . . . . 12
⊢ (𝑟 ∈ 𝑍 ↔ 𝑟 ∈ (ℤ≥‘𝑀)) | 
| 237 | 236 | biimpri 133 | 
. . . . . . . . . . 11
⊢ (𝑟 ∈
(ℤ≥‘𝑀) → 𝑟 ∈ 𝑍) | 
| 238 | 237 | adantl 277 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑟 ∈ (ℤ≥‘𝑀)) → 𝑟 ∈ 𝑍) | 
| 239 | 180, 235,
238 | rspcdva 2873 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑟 ∈ (ℤ≥‘𝑀)) → DECID
𝑟 ∈ 𝐴) | 
| 240 | 233, 234,
239 | ifcldadc 3590 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑟 ∈ (ℤ≥‘𝑀)) → if(𝑟 ∈ 𝐴, ⦋𝑟 / 𝑘⦌𝐵, 1) ∈ ℂ) | 
| 241 | 230, 240,
186 | syl2an2 594 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑟) = if(𝑟 ∈ 𝐴, ⦋𝑟 / 𝑘⦌𝐵, 1)) | 
| 242 | 128 | adantr 276 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑟 ∈ (ℤ≥‘𝑀)) → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 1)) | 
| 243 | 238, 242,
169 | sylc 62 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑟) = if(𝑟 ∈ 𝐴, ⦋𝑟 / 𝑘⦌𝐵, 1)) | 
| 244 | 241, 243 | eqtr4d 2232 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑟) = (𝐹‘𝑟)) | 
| 245 | 189 | adantl 277 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ)) → (𝑝 · 𝑞) ∈ ℂ) | 
| 246 | 22, 229, 244, 245 | seq3feq 10572 | 
. . . . 5
⊢ (𝜑 → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) = seq𝑀( · , 𝐹)) | 
| 247 | 246 | breq1d 4043 | 
. . . 4
⊢ (𝜑 → (seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥 ↔ seq𝑀( · , 𝐹) ⇝ 𝑥)) | 
| 248 | 214, 247 | bitrd 188 | 
. . 3
⊢ (𝜑 → ((∃𝑚 ∈ ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) ↔ seq𝑀( · , 𝐹) ⇝ 𝑥)) | 
| 249 | 248 | iotabidv 5241 | 
. 2
⊢ (𝜑 → (℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) = (℩𝑥seq𝑀( · , 𝐹) ⇝ 𝑥)) | 
| 250 |   | df-proddc 11716 | 
. 2
⊢
∏𝑘 ∈
𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) | 
| 251 |   | df-fv 5266 | 
. 2
⊢ ( ⇝
‘seq𝑀( · ,
𝐹)) = (℩𝑥seq𝑀( · , 𝐹) ⇝ 𝑥) | 
| 252 | 249, 250,
251 | 3eqtr4g 2254 | 
1
⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = ( ⇝ ‘seq𝑀( · , 𝐹))) |