Step | Hyp | Ref
| Expression |
1 | | simpll 524 |
. . . 4
⊢ (((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → 𝐴 ⊆ (ℤ≥‘𝑚)) |
2 | | simplr 525 |
. . . 4
⊢ (((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) |
3 | | simprr 527 |
. . . 4
⊢ (((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → seq𝑚( · , 𝐹) ⇝ 𝑥) |
4 | 1, 2, 3 | 3jca 1172 |
. . 3
⊢ (((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) |
5 | 4 | reximi 2567 |
. 2
⊢
(∃𝑚 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) |
6 | | fveq2 5496 |
. . . . . 6
⊢ (𝑚 = 𝑤 → (ℤ≥‘𝑚) =
(ℤ≥‘𝑤)) |
7 | 6 | sseq2d 3177 |
. . . . 5
⊢ (𝑚 = 𝑤 → (𝐴 ⊆ (ℤ≥‘𝑚) ↔ 𝐴 ⊆ (ℤ≥‘𝑤))) |
8 | 6 | raleqdv 2671 |
. . . . 5
⊢ (𝑚 = 𝑤 → (∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ↔ ∀𝑗 ∈ (ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴)) |
9 | | seqeq1 10404 |
. . . . . 6
⊢ (𝑚 = 𝑤 → seq𝑚( · , 𝐹) = seq𝑤( · , 𝐹)) |
10 | 9 | breq1d 3999 |
. . . . 5
⊢ (𝑚 = 𝑤 → (seq𝑚( · , 𝐹) ⇝ 𝑥 ↔ seq𝑤( · , 𝐹) ⇝ 𝑥)) |
11 | 7, 8, 10 | 3anbi123d 1307 |
. . . 4
⊢ (𝑚 = 𝑤 → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥))) |
12 | 11 | cbvrexvw 2701 |
. . 3
⊢
(∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ↔ ∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥)) |
13 | | reeanv 2639 |
. . . . 5
⊢
(∃𝑤 ∈
ℤ ∃𝑚 ∈
ℕ ((𝐴 ⊆
(ℤ≥‘𝑤) ∧ ∀𝑗 ∈ (ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚))) ↔ (∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)))) |
14 | | simprl3 1039 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → seq𝑤( · , 𝐹) ⇝ 𝑥) |
15 | | simprl1 1037 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝐴 ⊆ (ℤ≥‘𝑤)) |
16 | | uzssz 9506 |
. . . . . . . . . . . . . . 15
⊢
(ℤ≥‘𝑤) ⊆ ℤ |
17 | 15, 16 | sstrdi 3159 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝐴 ⊆ ℤ) |
18 | | 1zzd 9239 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 1 ∈
ℤ) |
19 | | simplrr 531 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝑚 ∈ ℕ) |
20 | 19 | nnzd 9333 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝑚 ∈ ℤ) |
21 | 18, 20 | fzfigd 10387 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → (1...𝑚) ∈ Fin) |
22 | | simprr 527 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝑓:(1...𝑚)–1-1-onto→𝐴) |
23 | | f1oeng 6735 |
. . . . . . . . . . . . . . . . 17
⊢
(((1...𝑚) ∈ Fin
∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (1...𝑚) ≈ 𝐴) |
24 | 21, 22, 23 | syl2anc 409 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → (1...𝑚) ≈ 𝐴) |
25 | 24 | ensymd 6761 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝐴 ≈ (1...𝑚)) |
26 | | enfii 6852 |
. . . . . . . . . . . . . . 15
⊢
(((1...𝑚) ∈ Fin
∧ 𝐴 ≈ (1...𝑚)) → 𝐴 ∈ Fin) |
27 | 21, 25, 26 | syl2anc 409 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝐴 ∈ Fin) |
28 | | zfz1iso 10776 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
29 | 17, 27, 28 | syl2anc 409 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
30 | | prodmo.1 |
. . . . . . . . . . . . . . . 16
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) |
31 | | prodmo.2 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
32 | 31 | ad4ant14 511 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
33 | | prodmodc.3 |
. . . . . . . . . . . . . . . 16
⊢ 𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑘⦌𝐵, 1)) |
34 | | eqid 2170 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)) |
35 | | simpll2 1032 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ⊆
(ℤ≥‘𝑤) ∧ ∀𝑗 ∈ (ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴)) → ∀𝑗 ∈ (ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴) |
36 | 35 | adantl 275 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → ∀𝑗 ∈ (ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴) |
37 | | eleq1w 2231 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) |
38 | 37 | dcbid 833 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝑘 → (DECID 𝑗 ∈ 𝐴 ↔ DECID 𝑘 ∈ 𝐴)) |
39 | 38 | rspcv 2830 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈
(ℤ≥‘𝑤) → (∀𝑗 ∈ (ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 → DECID 𝑘 ∈ 𝐴)) |
40 | 36, 39 | mpan9 279 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘 ∈ (ℤ≥‘𝑤)) → DECID
𝑘 ∈ 𝐴) |
41 | | simplrr 531 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑚 ∈ ℕ) |
42 | | simplrl 530 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑤 ∈ ℤ) |
43 | 15 | adantrr 476 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝐴 ⊆ (ℤ≥‘𝑤)) |
44 | | simprlr 533 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑓:(1...𝑚)–1-1-onto→𝐴) |
45 | | simprr 527 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
46 | 30, 32, 33, 34, 40, 41, 42, 43, 44, 45 | prodmodclem2a 11539 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → seq𝑤( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑚)) |
47 | 46 | expr 373 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → (𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑤( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑚))) |
48 | 47 | exlimdv 1812 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → (∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑤( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑚))) |
49 | 29, 48 | mpd 13 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → seq𝑤( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑚)) |
50 | | climuni 11256 |
. . . . . . . . . . . 12
⊢
((seq𝑤( · ,
𝐹) ⇝ 𝑥 ∧ seq𝑤( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑚)) → 𝑥 = (seq1( · , 𝐺)‘𝑚)) |
51 | 14, 49, 50 | syl2anc 409 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝑥 = (seq1( · , 𝐺)‘𝑚)) |
52 | | eqeq2 2180 |
. . . . . . . . . . 11
⊢ (𝑧 = (seq1( · , 𝐺)‘𝑚) → (𝑥 = 𝑧 ↔ 𝑥 = (seq1( · , 𝐺)‘𝑚))) |
53 | 51, 52 | syl5ibrcom 156 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → (𝑧 = (seq1( · , 𝐺)‘𝑚) → 𝑥 = 𝑧)) |
54 | 53 | expr 373 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥)) → (𝑓:(1...𝑚)–1-1-onto→𝐴 → (𝑧 = (seq1( · , 𝐺)‘𝑚) → 𝑥 = 𝑧))) |
55 | 54 | impd 252 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥)) → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧)) |
56 | 55 | exlimdv 1812 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥)) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧)) |
57 | 56 | expimpd 361 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) → (((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧)) |
58 | 57 | rexlimdvva 2595 |
. . . . 5
⊢ (𝜑 → (∃𝑤 ∈ ℤ ∃𝑚 ∈ ℕ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧)) |
59 | 13, 58 | syl5bir 152 |
. . . 4
⊢ (𝜑 → ((∃𝑤 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑤) ∧ ∀𝑗 ∈ (ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧)) |
60 | 59 | expdimp 257 |
. . 3
⊢ ((𝜑 ∧ ∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧)) |
61 | 12, 60 | sylan2b 285 |
. 2
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧)) |
62 | 5, 61 | sylan2 284 |
1
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥))) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧)) |