ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodmodclem2 GIF version

Theorem prodmodclem2 11759
Description: Lemma for prodmodc 11760. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 13-Apr-2024.)
Hypotheses
Ref Expression
prodmo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
prodmo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
prodmodc.3 𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 1))
Assertion
Ref Expression
prodmodclem2 ((𝜑 ∧ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥))) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧))
Distinct variable groups:   𝐴,𝑓,𝑗,𝑘,𝑚   𝐵,𝑗   𝑓,𝐹,𝑘,𝑚   𝑗,𝐺   𝜑,𝑓,𝑘,𝑚   𝑥,𝑓,𝑘,𝑚   𝑧,𝑓,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑗,𝑛)   𝐴(𝑥,𝑦,𝑧,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑓,𝑘,𝑚,𝑛)   𝐹(𝑥,𝑦,𝑧,𝑗,𝑛)   𝐺(𝑥,𝑦,𝑧,𝑓,𝑘,𝑚,𝑛)

Proof of Theorem prodmodclem2
Dummy variables 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . 4 (((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → 𝐴 ⊆ (ℤ𝑚))
2 simplr 528 . . . 4 (((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)
3 simprr 531 . . . 4 (((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → seq𝑚( · , 𝐹) ⇝ 𝑥)
41, 2, 33jca 1179 . . 3 (((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥))
54reximi 2594 . 2 (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥))
6 fveq2 5561 . . . . . 6 (𝑚 = 𝑤 → (ℤ𝑚) = (ℤ𝑤))
76sseq2d 3214 . . . . 5 (𝑚 = 𝑤 → (𝐴 ⊆ (ℤ𝑚) ↔ 𝐴 ⊆ (ℤ𝑤)))
86raleqdv 2699 . . . . 5 (𝑚 = 𝑤 → (∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ↔ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴))
9 seqeq1 10559 . . . . . 6 (𝑚 = 𝑤 → seq𝑚( · , 𝐹) = seq𝑤( · , 𝐹))
109breq1d 4044 . . . . 5 (𝑚 = 𝑤 → (seq𝑚( · , 𝐹) ⇝ 𝑥 ↔ seq𝑤( · , 𝐹) ⇝ 𝑥))
117, 8, 103anbi123d 1323 . . . 4 (𝑚 = 𝑤 → ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥)))
1211cbvrexvw 2734 . . 3 (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ↔ ∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥))
13 reeanv 2667 . . . . 5 (∃𝑤 ∈ ℤ ∃𝑚 ∈ ℕ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))) ↔ (∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))))
14 simprl3 1046 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → seq𝑤( · , 𝐹) ⇝ 𝑥)
15 simprl1 1044 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ⊆ (ℤ𝑤))
16 uzssz 9638 . . . . . . . . . . . . . . 15 (ℤ𝑤) ⊆ ℤ
1715, 16sstrdi 3196 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ⊆ ℤ)
18 1zzd 9370 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 1 ∈ ℤ)
19 simplrr 536 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝑚 ∈ ℕ)
2019nnzd 9464 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝑚 ∈ ℤ)
2118, 20fzfigd 10540 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (1...𝑚) ∈ Fin)
22 simprr 531 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝑓:(1...𝑚)–1-1-onto𝐴)
23 f1oeng 6825 . . . . . . . . . . . . . . . . 17 (((1...𝑚) ∈ Fin ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (1...𝑚) ≈ 𝐴)
2421, 22, 23syl2anc 411 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (1...𝑚) ≈ 𝐴)
2524ensymd 6851 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ≈ (1...𝑚))
26 enfii 6944 . . . . . . . . . . . . . . 15 (((1...𝑚) ∈ Fin ∧ 𝐴 ≈ (1...𝑚)) → 𝐴 ∈ Fin)
2721, 25, 26syl2anc 411 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ∈ Fin)
28 zfz1iso 10950 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
2917, 27, 28syl2anc 411 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
30 prodmo.1 . . . . . . . . . . . . . . . 16 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
31 prodmo.2 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
3231ad4ant14 514 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
33 prodmodc.3 . . . . . . . . . . . . . . . 16 𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 1))
34 eqid 2196 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑔𝑗) / 𝑘𝐵, 1)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑔𝑗) / 𝑘𝐵, 1))
35 simpll2 1039 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴)) → ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴)
3635adantl 277 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴)
37 eleq1w 2257 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
3837dcbid 839 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑘 → (DECID 𝑗𝐴DECID 𝑘𝐴))
3938rspcv 2864 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ𝑤) → (∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴DECID 𝑘𝐴))
4036, 39mpan9 281 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘 ∈ (ℤ𝑤)) → DECID 𝑘𝐴)
41 simplrr 536 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑚 ∈ ℕ)
42 simplrl 535 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑤 ∈ ℤ)
4315adantrr 479 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝐴 ⊆ (ℤ𝑤))
44 simprlr 538 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑓:(1...𝑚)–1-1-onto𝐴)
45 simprr 531 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
4630, 32, 33, 34, 40, 41, 42, 43, 44, 45prodmodclem2a 11758 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → seq𝑤( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑚))
4746expr 375 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑤( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑚)))
4847exlimdv 1833 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑤( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑚)))
4929, 48mpd 13 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → seq𝑤( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑚))
50 climuni 11475 . . . . . . . . . . . 12 ((seq𝑤( · , 𝐹) ⇝ 𝑥 ∧ seq𝑤( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑚)) → 𝑥 = (seq1( · , 𝐺)‘𝑚))
5114, 49, 50syl2anc 411 . . . . . . . . . . 11 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝑥 = (seq1( · , 𝐺)‘𝑚))
52 eqeq2 2206 . . . . . . . . . . 11 (𝑧 = (seq1( · , 𝐺)‘𝑚) → (𝑥 = 𝑧𝑥 = (seq1( · , 𝐺)‘𝑚)))
5351, 52syl5ibrcom 157 . . . . . . . . . 10 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (𝑧 = (seq1( · , 𝐺)‘𝑚) → 𝑥 = 𝑧))
5453expr 375 . . . . . . . . 9 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥)) → (𝑓:(1...𝑚)–1-1-onto𝐴 → (𝑧 = (seq1( · , 𝐺)‘𝑚) → 𝑥 = 𝑧)))
5554impd 254 . . . . . . . 8 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥)) → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧))
5655exlimdv 1833 . . . . . . 7 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥)) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧))
5756expimpd 363 . . . . . 6 ((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) → (((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧))
5857rexlimdvva 2622 . . . . 5 (𝜑 → (∃𝑤 ∈ ℤ ∃𝑚 ∈ ℕ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧))
5913, 58biimtrrid 153 . . . 4 (𝜑 → ((∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧))
6059expdimp 259 . . 3 ((𝜑 ∧ ∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧))
6112, 60sylan2b 287 . 2 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧))
625, 61sylan2 286 1 ((𝜑 ∧ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥))) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 835  w3a 980   = wceq 1364  wex 1506  wcel 2167  wral 2475  wrex 2476  csb 3084  wss 3157  ifcif 3562   class class class wbr 4034  cmpt 4095  1-1-ontowf1o 5258  cfv 5259   Isom wiso 5260  (class class class)co 5925  cen 6806  Fincfn 6808  cc 7894  0cc0 7896  1c1 7897   · cmul 7901   < clt 8078  cle 8079   # cap 8625  cn 9007  cz 9343  cuz 9618  ...cfz 10100  seqcseq 10556  chash 10884  cli 11460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461
This theorem is referenced by:  prodmodc  11760
  Copyright terms: Public domain W3C validator