ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodmodclem2 GIF version

Theorem prodmodclem2 11358
Description: Lemma for prodmodc 11359. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 13-Apr-2024.)
Hypotheses
Ref Expression
prodmo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
prodmo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
prodmodc.3 𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 1))
Assertion
Ref Expression
prodmodclem2 ((𝜑 ∧ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥))) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧))
Distinct variable groups:   𝐴,𝑓,𝑗,𝑘,𝑚   𝐵,𝑗   𝑓,𝐹,𝑘,𝑚   𝑗,𝐺   𝜑,𝑓,𝑘,𝑚   𝑥,𝑓,𝑘,𝑚   𝑧,𝑓,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑗,𝑛)   𝐴(𝑥,𝑦,𝑧,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑓,𝑘,𝑚,𝑛)   𝐹(𝑥,𝑦,𝑧,𝑗,𝑛)   𝐺(𝑥,𝑦,𝑧,𝑓,𝑘,𝑚,𝑛)

Proof of Theorem prodmodclem2
Dummy variables 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 518 . . . 4 (((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → 𝐴 ⊆ (ℤ𝑚))
2 simplr 519 . . . 4 (((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)
3 simprr 521 . . . 4 (((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → seq𝑚( · , 𝐹) ⇝ 𝑥)
41, 2, 33jca 1161 . . 3 (((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥))
54reximi 2529 . 2 (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥))
6 fveq2 5421 . . . . . 6 (𝑚 = 𝑤 → (ℤ𝑚) = (ℤ𝑤))
76sseq2d 3127 . . . . 5 (𝑚 = 𝑤 → (𝐴 ⊆ (ℤ𝑚) ↔ 𝐴 ⊆ (ℤ𝑤)))
86raleqdv 2632 . . . . 5 (𝑚 = 𝑤 → (∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ↔ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴))
9 seqeq1 10233 . . . . . 6 (𝑚 = 𝑤 → seq𝑚( · , 𝐹) = seq𝑤( · , 𝐹))
109breq1d 3939 . . . . 5 (𝑚 = 𝑤 → (seq𝑚( · , 𝐹) ⇝ 𝑥 ↔ seq𝑤( · , 𝐹) ⇝ 𝑥))
117, 8, 103anbi123d 1290 . . . 4 (𝑚 = 𝑤 → ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥)))
1211cbvrexvw 2659 . . 3 (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ↔ ∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥))
13 reeanv 2600 . . . . 5 (∃𝑤 ∈ ℤ ∃𝑚 ∈ ℕ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))) ↔ (∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))))
14 simprl3 1028 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → seq𝑤( · , 𝐹) ⇝ 𝑥)
15 simprl1 1026 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ⊆ (ℤ𝑤))
16 uzssz 9357 . . . . . . . . . . . . . . 15 (ℤ𝑤) ⊆ ℤ
1715, 16sstrdi 3109 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ⊆ ℤ)
18 1zzd 9093 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 1 ∈ ℤ)
19 simplrr 525 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝑚 ∈ ℕ)
2019nnzd 9184 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝑚 ∈ ℤ)
2118, 20fzfigd 10216 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (1...𝑚) ∈ Fin)
22 simprr 521 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝑓:(1...𝑚)–1-1-onto𝐴)
23 f1oeng 6651 . . . . . . . . . . . . . . . . 17 (((1...𝑚) ∈ Fin ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (1...𝑚) ≈ 𝐴)
2421, 22, 23syl2anc 408 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (1...𝑚) ≈ 𝐴)
2524ensymd 6677 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ≈ (1...𝑚))
26 enfii 6768 . . . . . . . . . . . . . . 15 (((1...𝑚) ∈ Fin ∧ 𝐴 ≈ (1...𝑚)) → 𝐴 ∈ Fin)
2721, 25, 26syl2anc 408 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ∈ Fin)
28 zfz1iso 10596 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
2917, 27, 28syl2anc 408 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
30 prodmo.1 . . . . . . . . . . . . . . . 16 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
31 prodmo.2 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
3231ad4ant14 505 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
33 prodmodc.3 . . . . . . . . . . . . . . . 16 𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 1))
34 eqid 2139 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑔𝑗) / 𝑘𝐵, 1)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑔𝑗) / 𝑘𝐵, 1))
35 simpll2 1021 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴)) → ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴)
3635adantl 275 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴)
37 eleq1w 2200 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
3837dcbid 823 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑘 → (DECID 𝑗𝐴DECID 𝑘𝐴))
3938rspcv 2785 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ𝑤) → (∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴DECID 𝑘𝐴))
4036, 39mpan9 279 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘 ∈ (ℤ𝑤)) → DECID 𝑘𝐴)
41 simplrr 525 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑚 ∈ ℕ)
42 simplrl 524 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑤 ∈ ℤ)
4315adantrr 470 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝐴 ⊆ (ℤ𝑤))
44 simprlr 527 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑓:(1...𝑚)–1-1-onto𝐴)
45 simprr 521 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
4630, 32, 33, 34, 40, 41, 42, 43, 44, 45prodmodclem2a 11357 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → seq𝑤( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑚))
4746expr 372 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑤( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑚)))
4847exlimdv 1791 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑤( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑚)))
4929, 48mpd 13 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → seq𝑤( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑚))
50 climuni 11074 . . . . . . . . . . . 12 ((seq𝑤( · , 𝐹) ⇝ 𝑥 ∧ seq𝑤( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑚)) → 𝑥 = (seq1( · , 𝐺)‘𝑚))
5114, 49, 50syl2anc 408 . . . . . . . . . . 11 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝑥 = (seq1( · , 𝐺)‘𝑚))
52 eqeq2 2149 . . . . . . . . . . 11 (𝑧 = (seq1( · , 𝐺)‘𝑚) → (𝑥 = 𝑧𝑥 = (seq1( · , 𝐺)‘𝑚)))
5351, 52syl5ibrcom 156 . . . . . . . . . 10 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (𝑧 = (seq1( · , 𝐺)‘𝑚) → 𝑥 = 𝑧))
5453expr 372 . . . . . . . . 9 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥)) → (𝑓:(1...𝑚)–1-1-onto𝐴 → (𝑧 = (seq1( · , 𝐺)‘𝑚) → 𝑥 = 𝑧)))
5554impd 252 . . . . . . . 8 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥)) → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧))
5655exlimdv 1791 . . . . . . 7 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥)) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧))
5756expimpd 360 . . . . . 6 ((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) → (((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧))
5857rexlimdvva 2557 . . . . 5 (𝜑 → (∃𝑤 ∈ ℤ ∃𝑚 ∈ ℕ ((𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧))
5913, 58syl5bir 152 . . . 4 (𝜑 → ((∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧))
6059expdimp 257 . . 3 ((𝜑 ∧ ∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ𝑤) ∧ ∀𝑗 ∈ (ℤ𝑤)DECID 𝑗𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧))
6112, 60sylan2b 285 . 2 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧))
625, 61sylan2 284 1 ((𝜑 ∧ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥))) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  DECID wdc 819  w3a 962   = wceq 1331  wex 1468  wcel 1480  wral 2416  wrex 2417  csb 3003  wss 3071  ifcif 3474   class class class wbr 3929  cmpt 3989  1-1-ontowf1o 5122  cfv 5123   Isom wiso 5124  (class class class)co 5774  cen 6632  Fincfn 6634  cc 7630  0cc0 7632  1c1 7633   · cmul 7637   < clt 7812  cle 7813   # cap 8355  cn 8732  cz 9066  cuz 9338  ...cfz 9802  seqcseq 10230  chash 10533  cli 11059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750  ax-arch 7751  ax-caucvg 7752
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356  df-div 8445  df-inn 8733  df-2 8791  df-3 8792  df-4 8793  df-n0 8990  df-z 9067  df-uz 9339  df-q 9424  df-rp 9454  df-fz 9803  df-fzo 9932  df-seqfrec 10231  df-exp 10305  df-ihash 10534  df-cj 10626  df-re 10627  df-im 10628  df-rsqrt 10782  df-abs 10783  df-clim 11060
This theorem is referenced by:  prodmodc  11359
  Copyright terms: Public domain W3C validator