| Step | Hyp | Ref
 | Expression | 
| 1 |   | simpll 527 | 
. . . 4
⊢ (((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → 𝐴 ⊆ (ℤ≥‘𝑚)) | 
| 2 |   | simplr 528 | 
. . . 4
⊢ (((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) | 
| 3 |   | simprr 531 | 
. . . 4
⊢ (((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → seq𝑚( · , 𝐹) ⇝ 𝑥) | 
| 4 | 1, 2, 3 | 3jca 1179 | 
. . 3
⊢ (((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) | 
| 5 | 4 | reximi 2594 | 
. 2
⊢
(∃𝑚 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) | 
| 6 |   | fveq2 5558 | 
. . . . . 6
⊢ (𝑚 = 𝑤 → (ℤ≥‘𝑚) =
(ℤ≥‘𝑤)) | 
| 7 | 6 | sseq2d 3213 | 
. . . . 5
⊢ (𝑚 = 𝑤 → (𝐴 ⊆ (ℤ≥‘𝑚) ↔ 𝐴 ⊆ (ℤ≥‘𝑤))) | 
| 8 | 6 | raleqdv 2699 | 
. . . . 5
⊢ (𝑚 = 𝑤 → (∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ↔ ∀𝑗 ∈ (ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴)) | 
| 9 |   | seqeq1 10542 | 
. . . . . 6
⊢ (𝑚 = 𝑤 → seq𝑚( · , 𝐹) = seq𝑤( · , 𝐹)) | 
| 10 | 9 | breq1d 4043 | 
. . . . 5
⊢ (𝑚 = 𝑤 → (seq𝑚( · , 𝐹) ⇝ 𝑥 ↔ seq𝑤( · , 𝐹) ⇝ 𝑥)) | 
| 11 | 7, 8, 10 | 3anbi123d 1323 | 
. . . 4
⊢ (𝑚 = 𝑤 → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥))) | 
| 12 | 11 | cbvrexvw 2734 | 
. . 3
⊢
(∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ↔ ∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥)) | 
| 13 |   | reeanv 2667 | 
. . . . 5
⊢
(∃𝑤 ∈
ℤ ∃𝑚 ∈
ℕ ((𝐴 ⊆
(ℤ≥‘𝑤) ∧ ∀𝑗 ∈ (ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚))) ↔ (∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)))) | 
| 14 |   | simprl3 1046 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → seq𝑤( · , 𝐹) ⇝ 𝑥) | 
| 15 |   | simprl1 1044 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝐴 ⊆ (ℤ≥‘𝑤)) | 
| 16 |   | uzssz 9621 | 
. . . . . . . . . . . . . . 15
⊢
(ℤ≥‘𝑤) ⊆ ℤ | 
| 17 | 15, 16 | sstrdi 3195 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝐴 ⊆ ℤ) | 
| 18 |   | 1zzd 9353 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 1 ∈
ℤ) | 
| 19 |   | simplrr 536 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝑚 ∈ ℕ) | 
| 20 | 19 | nnzd 9447 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝑚 ∈ ℤ) | 
| 21 | 18, 20 | fzfigd 10523 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → (1...𝑚) ∈ Fin) | 
| 22 |   | simprr 531 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝑓:(1...𝑚)–1-1-onto→𝐴) | 
| 23 |   | f1oeng 6816 | 
. . . . . . . . . . . . . . . . 17
⊢
(((1...𝑚) ∈ Fin
∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (1...𝑚) ≈ 𝐴) | 
| 24 | 21, 22, 23 | syl2anc 411 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → (1...𝑚) ≈ 𝐴) | 
| 25 | 24 | ensymd 6842 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝐴 ≈ (1...𝑚)) | 
| 26 |   | enfii 6935 | 
. . . . . . . . . . . . . . 15
⊢
(((1...𝑚) ∈ Fin
∧ 𝐴 ≈ (1...𝑚)) → 𝐴 ∈ Fin) | 
| 27 | 21, 25, 26 | syl2anc 411 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝐴 ∈ Fin) | 
| 28 |   | zfz1iso 10933 | 
. . . . . . . . . . . . . 14
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴)) | 
| 29 | 17, 27, 28 | syl2anc 411 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴)) | 
| 30 |   | prodmo.1 | 
. . . . . . . . . . . . . . . 16
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) | 
| 31 |   | prodmo.2 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | 
| 32 | 31 | ad4ant14 514 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | 
| 33 |   | prodmodc.3 | 
. . . . . . . . . . . . . . . 16
⊢ 𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑘⦌𝐵, 1)) | 
| 34 |   | eqid 2196 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)) = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑔‘𝑗) / 𝑘⦌𝐵, 1)) | 
| 35 |   | simpll2 1039 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ⊆
(ℤ≥‘𝑤) ∧ ∀𝑗 ∈ (ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴)) → ∀𝑗 ∈ (ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴) | 
| 36 | 35 | adantl 277 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → ∀𝑗 ∈ (ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴) | 
| 37 |   | eleq1w 2257 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) | 
| 38 | 37 | dcbid 839 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝑘 → (DECID 𝑗 ∈ 𝐴 ↔ DECID 𝑘 ∈ 𝐴)) | 
| 39 | 38 | rspcv 2864 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈
(ℤ≥‘𝑤) → (∀𝑗 ∈ (ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 → DECID 𝑘 ∈ 𝐴)) | 
| 40 | 36, 39 | mpan9 281 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘 ∈ (ℤ≥‘𝑤)) → DECID
𝑘 ∈ 𝐴) | 
| 41 |   | simplrr 536 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑚 ∈ ℕ) | 
| 42 |   | simplrl 535 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑤 ∈ ℤ) | 
| 43 | 15 | adantrr 479 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝐴 ⊆ (ℤ≥‘𝑤)) | 
| 44 |   | simprlr 538 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑓:(1...𝑚)–1-1-onto→𝐴) | 
| 45 |   | simprr 531 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴)) | 
| 46 | 30, 32, 33, 34, 40, 41, 42, 43, 44, 45 | prodmodclem2a 11741 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → seq𝑤( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑚)) | 
| 47 | 46 | expr 375 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → (𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑤( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑚))) | 
| 48 | 47 | exlimdv 1833 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → (∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑤( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑚))) | 
| 49 | 29, 48 | mpd 13 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → seq𝑤( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑚)) | 
| 50 |   | climuni 11458 | 
. . . . . . . . . . . 12
⊢
((seq𝑤( · ,
𝐹) ⇝ 𝑥 ∧ seq𝑤( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑚)) → 𝑥 = (seq1( · , 𝐺)‘𝑚)) | 
| 51 | 14, 49, 50 | syl2anc 411 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝑥 = (seq1( · , 𝐺)‘𝑚)) | 
| 52 |   | eqeq2 2206 | 
. . . . . . . . . . 11
⊢ (𝑧 = (seq1( · , 𝐺)‘𝑚) → (𝑥 = 𝑧 ↔ 𝑥 = (seq1( · , 𝐺)‘𝑚))) | 
| 53 | 51, 52 | syl5ibrcom 157 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → (𝑧 = (seq1( · , 𝐺)‘𝑚) → 𝑥 = 𝑧)) | 
| 54 | 53 | expr 375 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥)) → (𝑓:(1...𝑚)–1-1-onto→𝐴 → (𝑧 = (seq1( · , 𝐺)‘𝑚) → 𝑥 = 𝑧))) | 
| 55 | 54 | impd 254 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥)) → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧)) | 
| 56 | 55 | exlimdv 1833 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥)) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧)) | 
| 57 | 56 | expimpd 363 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) → (((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧)) | 
| 58 | 57 | rexlimdvva 2622 | 
. . . . 5
⊢ (𝜑 → (∃𝑤 ∈ ℤ ∃𝑚 ∈ ℕ ((𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧)) | 
| 59 | 13, 58 | biimtrrid 153 | 
. . . 4
⊢ (𝜑 → ((∃𝑤 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑤) ∧ ∀𝑗 ∈ (ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧)) | 
| 60 | 59 | expdimp 259 | 
. . 3
⊢ ((𝜑 ∧ ∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑤) ∧ ∀𝑗 ∈
(ℤ≥‘𝑤)DECID 𝑗 ∈ 𝐴 ∧ seq𝑤( · , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧)) | 
| 61 | 12, 60 | sylan2b 287 | 
. 2
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧)) | 
| 62 | 5, 61 | sylan2 286 | 
1
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥))) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧)) |