ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ad4ant14 Unicode version

Theorem ad4ant14 505
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad4ant2.1  |-  ( (
ph  /\  ps )  ->  ch )
Assertion
Ref Expression
ad4ant14  |-  ( ( ( ( ph  /\  th )  /\  ta )  /\  ps )  ->  ch )

Proof of Theorem ad4ant14
StepHypRef Expression
1 ad4ant2.1 . . 3  |-  ( (
ph  /\  ps )  ->  ch )
21adantlr 468 . 2  |-  ( ( ( ph  /\  th )  /\  ps )  ->  ch )
32adantlr 468 1  |-  ( ( ( ( ph  /\  th )  /\  ta )  /\  ps )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem is referenced by:  ad5ant15  512  ad5ant25  515  prodmodclem2  11358  prodmodc  11359
  Copyright terms: Public domain W3C validator