ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ad4ant14 Unicode version

Theorem ad4ant14 514
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad4ant2.1  |-  ( (
ph  /\  ps )  ->  ch )
Assertion
Ref Expression
ad4ant14  |-  ( ( ( ( ph  /\  th )  /\  ta )  /\  ps )  ->  ch )

Proof of Theorem ad4ant14
StepHypRef Expression
1 ad4ant2.1 . . 3  |-  ( (
ph  /\  ps )  ->  ch )
21adantlr 477 . 2  |-  ( ( ( ph  /\  th )  /\  ps )  ->  ch )
32adantlr 477 1  |-  ( ( ( ( ph  /\  th )  /\  ta )  /\  ps )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  ad5ant15  521  ad5ant25  524  seqfeq4g  10623  prodmodclem2  11742  prodmodc  11743  zproddc  11744  fprod2d  11788  gcdsupex  12124  gcdsupcl  12125  grpinvalem  13028  gsumwsubmcl  13128  gsumwmhm  13130  subrngintm  13768  plyco  14995  gausslemma2dlem1f1o  15301
  Copyright terms: Public domain W3C validator