ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ad4ant14 Unicode version

Theorem ad4ant14 514
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad4ant2.1  |-  ( (
ph  /\  ps )  ->  ch )
Assertion
Ref Expression
ad4ant14  |-  ( ( ( ( ph  /\  th )  /\  ta )  /\  ps )  ->  ch )

Proof of Theorem ad4ant14
StepHypRef Expression
1 ad4ant2.1 . . 3  |-  ( (
ph  /\  ps )  ->  ch )
21adantlr 477 . 2  |-  ( ( ( ph  /\  th )  /\  ps )  ->  ch )
32adantlr 477 1  |-  ( ( ( ( ph  /\  th )  /\  ta )  /\  ps )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  ad5ant15  521  ad5ant25  524  seqfeq4g  10678  prodmodclem2  11921  prodmodc  11922  zproddc  11923  fprod2d  11967  gcdsupex  12311  gcdsupcl  12312  grpinvalem  13250  gsumwsubmcl  13361  gsumwmhm  13363  subrngintm  14007  plyco  15264  gausslemma2dlem1f1o  15570
  Copyright terms: Public domain W3C validator