ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grprinvlem GIF version

Theorem grprinvlem 5958
Description: Lemma for grprinvd 5959. (Contributed by NM, 9-Aug-2013.)
Hypotheses
Ref Expression
grprinvlem.c ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
grprinvlem.o (𝜑𝑂𝐵)
grprinvlem.i ((𝜑𝑥𝐵) → (𝑂 + 𝑥) = 𝑥)
grprinvlem.a ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
grprinvlem.n ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 𝑂)
grprinvlem.x ((𝜑𝜓) → 𝑋𝐵)
grprinvlem.e ((𝜑𝜓) → (𝑋 + 𝑋) = 𝑋)
Assertion
Ref Expression
grprinvlem ((𝜑𝜓) → 𝑋 = 𝑂)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝑂,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑦,𝑋,𝑧   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑧)   𝑋(𝑥)

Proof of Theorem grprinvlem
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grprinvlem.x . . 3 ((𝜑𝜓) → 𝑋𝐵)
2 grprinvlem.n . . . . . 6 ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 𝑂)
32ralrimiva 2503 . . . . 5 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑦 + 𝑥) = 𝑂)
4 oveq2 5775 . . . . . . . 8 (𝑥 = 𝑧 → (𝑦 + 𝑥) = (𝑦 + 𝑧))
54eqeq1d 2146 . . . . . . 7 (𝑥 = 𝑧 → ((𝑦 + 𝑥) = 𝑂 ↔ (𝑦 + 𝑧) = 𝑂))
65rexbidv 2436 . . . . . 6 (𝑥 = 𝑧 → (∃𝑦𝐵 (𝑦 + 𝑥) = 𝑂 ↔ ∃𝑦𝐵 (𝑦 + 𝑧) = 𝑂))
76cbvralv 2652 . . . . 5 (∀𝑥𝐵𝑦𝐵 (𝑦 + 𝑥) = 𝑂 ↔ ∀𝑧𝐵𝑦𝐵 (𝑦 + 𝑧) = 𝑂)
83, 7sylib 121 . . . 4 (𝜑 → ∀𝑧𝐵𝑦𝐵 (𝑦 + 𝑧) = 𝑂)
9 oveq2 5775 . . . . . . 7 (𝑧 = 𝑋 → (𝑦 + 𝑧) = (𝑦 + 𝑋))
109eqeq1d 2146 . . . . . 6 (𝑧 = 𝑋 → ((𝑦 + 𝑧) = 𝑂 ↔ (𝑦 + 𝑋) = 𝑂))
1110rexbidv 2436 . . . . 5 (𝑧 = 𝑋 → (∃𝑦𝐵 (𝑦 + 𝑧) = 𝑂 ↔ ∃𝑦𝐵 (𝑦 + 𝑋) = 𝑂))
1211rspccva 2783 . . . 4 ((∀𝑧𝐵𝑦𝐵 (𝑦 + 𝑧) = 𝑂𝑋𝐵) → ∃𝑦𝐵 (𝑦 + 𝑋) = 𝑂)
138, 12sylan 281 . . 3 ((𝜑𝑋𝐵) → ∃𝑦𝐵 (𝑦 + 𝑋) = 𝑂)
141, 13syldan 280 . 2 ((𝜑𝜓) → ∃𝑦𝐵 (𝑦 + 𝑋) = 𝑂)
15 grprinvlem.e . . . . 5 ((𝜑𝜓) → (𝑋 + 𝑋) = 𝑋)
1615oveq2d 5783 . . . 4 ((𝜑𝜓) → (𝑦 + (𝑋 + 𝑋)) = (𝑦 + 𝑋))
1716adantr 274 . . 3 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → (𝑦 + (𝑋 + 𝑋)) = (𝑦 + 𝑋))
18 simprr 521 . . . . 5 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → (𝑦 + 𝑋) = 𝑂)
1918oveq1d 5782 . . . 4 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → ((𝑦 + 𝑋) + 𝑋) = (𝑂 + 𝑋))
20 simpll 518 . . . . . 6 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → 𝜑)
21 grprinvlem.a . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
2221caovassg 5922 . . . . . 6 ((𝜑 ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
2320, 22sylan 281 . . . . 5 ((((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
24 simprl 520 . . . . 5 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → 𝑦𝐵)
251adantr 274 . . . . 5 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → 𝑋𝐵)
2623, 24, 25, 25caovassd 5923 . . . 4 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → ((𝑦 + 𝑋) + 𝑋) = (𝑦 + (𝑋 + 𝑋)))
27 oveq2 5775 . . . . . . 7 (𝑦 = 𝑋 → (𝑂 + 𝑦) = (𝑂 + 𝑋))
28 id 19 . . . . . . 7 (𝑦 = 𝑋𝑦 = 𝑋)
2927, 28eqeq12d 2152 . . . . . 6 (𝑦 = 𝑋 → ((𝑂 + 𝑦) = 𝑦 ↔ (𝑂 + 𝑋) = 𝑋))
30 grprinvlem.i . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑂 + 𝑥) = 𝑥)
3130ralrimiva 2503 . . . . . . . 8 (𝜑 → ∀𝑥𝐵 (𝑂 + 𝑥) = 𝑥)
32 oveq2 5775 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑂 + 𝑥) = (𝑂 + 𝑦))
33 id 19 . . . . . . . . . 10 (𝑥 = 𝑦𝑥 = 𝑦)
3432, 33eqeq12d 2152 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑂 + 𝑥) = 𝑥 ↔ (𝑂 + 𝑦) = 𝑦))
3534cbvralv 2652 . . . . . . . 8 (∀𝑥𝐵 (𝑂 + 𝑥) = 𝑥 ↔ ∀𝑦𝐵 (𝑂 + 𝑦) = 𝑦)
3631, 35sylib 121 . . . . . . 7 (𝜑 → ∀𝑦𝐵 (𝑂 + 𝑦) = 𝑦)
3736adantr 274 . . . . . 6 ((𝜑𝜓) → ∀𝑦𝐵 (𝑂 + 𝑦) = 𝑦)
3829, 37, 1rspcdva 2789 . . . . 5 ((𝜑𝜓) → (𝑂 + 𝑋) = 𝑋)
3938adantr 274 . . . 4 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → (𝑂 + 𝑋) = 𝑋)
4019, 26, 393eqtr3d 2178 . . 3 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → (𝑦 + (𝑋 + 𝑋)) = 𝑋)
4117, 40, 183eqtr3d 2178 . 2 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → 𝑋 = 𝑂)
4214, 41rexlimddv 2552 1 ((𝜑𝜓) → 𝑋 = 𝑂)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 962   = wceq 1331  wcel 1480  wral 2414  wrex 2415  (class class class)co 5767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-un 3070  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-iota 5083  df-fv 5126  df-ov 5770
This theorem is referenced by:  grprinvd  5959
  Copyright terms: Public domain W3C validator