ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprod2d GIF version

Theorem fprod2d 11586
Description: Write a double product as a product over a two-dimensional region. Compare fsum2d 11398. (Contributed by Scott Fenton, 30-Jan-2018.)
Hypotheses
Ref Expression
fprod2d.1 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)
fprod2d.2 (𝜑𝐴 ∈ Fin)
fprod2d.3 ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)
fprod2d.4 ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fprod2d (𝜑 → ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)
Distinct variable groups:   𝐴,𝑗,𝑘,𝑧   𝐵,𝑘,𝑧   𝑧,𝐶   𝐷,𝑗,𝑘   𝜑,𝑗,𝑘,𝑧
Allowed substitution hints:   𝐵(𝑗)   𝐶(𝑗,𝑘)   𝐷(𝑧)

Proof of Theorem fprod2d
Dummy variables 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3167 . 2 𝐴𝐴
2 fprod2d.2 . . 3 (𝜑𝐴 ∈ Fin)
3 sseq1 3170 . . . . . 6 (𝑤 = ∅ → (𝑤𝐴 ↔ ∅ ⊆ 𝐴))
4 prodeq1 11516 . . . . . . 7 (𝑤 = ∅ → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑗 ∈ ∅ ∏𝑘𝐵 𝐶)
5 iuneq1 3886 . . . . . . . . 9 (𝑤 = ∅ → 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗 ∈ ∅ ({𝑗} × 𝐵))
6 0iun 3930 . . . . . . . . 9 𝑗 ∈ ∅ ({𝑗} × 𝐵) = ∅
75, 6eqtrdi 2219 . . . . . . . 8 (𝑤 = ∅ → 𝑗𝑤 ({𝑗} × 𝐵) = ∅)
87prodeq1d 11527 . . . . . . 7 (𝑤 = ∅ → ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = ∏𝑧 ∈ ∅ 𝐷)
94, 8eqeq12d 2185 . . . . . 6 (𝑤 = ∅ → (∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ ∏𝑗 ∈ ∅ ∏𝑘𝐵 𝐶 = ∏𝑧 ∈ ∅ 𝐷))
103, 9imbi12d 233 . . . . 5 (𝑤 = ∅ → ((𝑤𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ (∅ ⊆ 𝐴 → ∏𝑗 ∈ ∅ ∏𝑘𝐵 𝐶 = ∏𝑧 ∈ ∅ 𝐷)))
1110imbi2d 229 . . . 4 (𝑤 = ∅ → ((𝜑 → (𝑤𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → (∅ ⊆ 𝐴 → ∏𝑗 ∈ ∅ ∏𝑘𝐵 𝐶 = ∏𝑧 ∈ ∅ 𝐷))))
12 sseq1 3170 . . . . . 6 (𝑤 = 𝑥 → (𝑤𝐴𝑥𝐴))
13 prodeq1 11516 . . . . . . 7 (𝑤 = 𝑥 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑗𝑥𝑘𝐵 𝐶)
14 iuneq1 3886 . . . . . . . 8 (𝑤 = 𝑥 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗𝑥 ({𝑗} × 𝐵))
1514prodeq1d 11527 . . . . . . 7 (𝑤 = 𝑥 → ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)
1613, 15eqeq12d 2185 . . . . . 6 (𝑤 = 𝑥 → (∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷))
1712, 16imbi12d 233 . . . . 5 (𝑤 = 𝑥 → ((𝑤𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ (𝑥𝐴 → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)))
1817imbi2d 229 . . . 4 (𝑤 = 𝑥 → ((𝜑 → (𝑤𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → (𝑥𝐴 → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷))))
19 sseq1 3170 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑦}) → (𝑤𝐴 ↔ (𝑥 ∪ {𝑦}) ⊆ 𝐴))
20 prodeq1 11516 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑦}) → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶)
21 iuneq1 3886 . . . . . . . 8 (𝑤 = (𝑥 ∪ {𝑦}) → 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵))
2221prodeq1d 11527 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑦}) → ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)
2320, 22eqeq12d 2185 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑦}) → (∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))
2419, 23imbi12d 233 . . . . 5 (𝑤 = (𝑥 ∪ {𝑦}) → ((𝑤𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
2524imbi2d 229 . . . 4 (𝑤 = (𝑥 ∪ {𝑦}) → ((𝜑 → (𝑤𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))))
26 sseq1 3170 . . . . . 6 (𝑤 = 𝐴 → (𝑤𝐴𝐴𝐴))
27 prodeq1 11516 . . . . . . 7 (𝑤 = 𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑗𝐴𝑘𝐵 𝐶)
28 iuneq1 3886 . . . . . . . 8 (𝑤 = 𝐴 𝑗𝑤 ({𝑗} × 𝐵) = 𝑗𝐴 ({𝑗} × 𝐵))
2928prodeq1d 11527 . . . . . . 7 (𝑤 = 𝐴 → ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 = ∏𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)
3027, 29eqeq12d 2185 . . . . . 6 (𝑤 = 𝐴 → (∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷 ↔ ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷))
3126, 30imbi12d 233 . . . . 5 (𝑤 = 𝐴 → ((𝑤𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷) ↔ (𝐴𝐴 → ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)))
3231imbi2d 229 . . . 4 (𝑤 = 𝐴 → ((𝜑 → (𝑤𝐴 → ∏𝑗𝑤𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑤 ({𝑗} × 𝐵)𝐷)) ↔ (𝜑 → (𝐴𝐴 → ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷))))
33 prod0 11548 . . . . . 6 𝑗 ∈ ∅ ∏𝑘𝐵 𝐶 = 1
34 prod0 11548 . . . . . 6 𝑧 ∈ ∅ 𝐷 = 1
3533, 34eqtr4i 2194 . . . . 5 𝑗 ∈ ∅ ∏𝑘𝐵 𝐶 = ∏𝑧 ∈ ∅ 𝐷
36352a1i 27 . . . 4 (𝜑 → (∅ ⊆ 𝐴 → ∏𝑗 ∈ ∅ ∏𝑘𝐵 𝐶 = ∏𝑧 ∈ ∅ 𝐷))
37 ssun1 3290 . . . . . . . . 9 𝑥 ⊆ (𝑥 ∪ {𝑦})
38 sstr 3155 . . . . . . . . 9 ((𝑥 ⊆ (𝑥 ∪ {𝑦}) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥𝐴)
3937, 38mpan 422 . . . . . . . 8 ((𝑥 ∪ {𝑦}) ⊆ 𝐴𝑥𝐴)
4039imim1i 60 . . . . . . 7 ((𝑥𝐴 → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷))
41 fprod2d.1 . . . . . . . . . 10 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)
422ad2antrr 485 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝐴 ∈ Fin)
43 fprod2d.3 . . . . . . . . . . 11 ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)
4443ad4ant14 511 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑗𝐴) → 𝐵 ∈ Fin)
45 fprod2d.4 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
4645ad4ant14 511 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
47 simplrr 531 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → ¬ 𝑦𝑥)
48 simpr 109 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → (𝑥 ∪ {𝑦}) ⊆ 𝐴)
49 simplrl 530 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) → 𝑥 ∈ Fin)
50 biid 170 . . . . . . . . . 10 (∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷 ↔ ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)
5141, 42, 44, 46, 47, 48, 49, 50fprod2dlemstep 11585 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) ∧ (𝑥 ∪ {𝑦}) ⊆ 𝐴) ∧ ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)
5251exp31 362 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → (∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷 → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
5352a2d 26 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) → (((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
5440, 53syl5 32 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑦𝑥)) → ((𝑥𝐴 → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)))
5554expcom 115 . . . . 5 ((𝑥 ∈ Fin ∧ ¬ 𝑦𝑥) → (𝜑 → ((𝑥𝐴 → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷) → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))))
5655a2d 26 . . . 4 ((𝑥 ∈ Fin ∧ ¬ 𝑦𝑥) → ((𝜑 → (𝑥𝐴 → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)) → (𝜑 → ((𝑥 ∪ {𝑦}) ⊆ 𝐴 → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷))))
5711, 18, 25, 32, 36, 56findcard2s 6868 . . 3 (𝐴 ∈ Fin → (𝜑 → (𝐴𝐴 → ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)))
582, 57mpcom 36 . 2 (𝜑 → (𝐴𝐴 → ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷))
591, 58mpi 15 1 (𝜑 → ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1348  wcel 2141  cun 3119  wss 3121  c0 3414  {csn 3583  cop 3586   ciun 3873   × cxp 4609  Fincfn 6718  cc 7772  1c1 7775  cprod 11513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-disj 3967  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-proddc 11514
This theorem is referenced by:  fprodxp  11587  fprodcom2fi  11589
  Copyright terms: Public domain W3C validator