Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > alrimd | GIF version |
Description: Deduction from Theorem 19.21 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
alrimd.1 | ⊢ Ⅎ𝑥𝜑 |
alrimd.2 | ⊢ Ⅎ𝑥𝜓 |
alrimd.3 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
alrimd | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrimd.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | alrimd.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
4 | alrimd.3 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
5 | 1, 3, 4 | alrimdd 1602 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 Ⅎwnf 1453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-5 1440 ax-gen 1442 ax-4 1503 |
This theorem depends on definitions: df-bi 116 df-nf 1454 |
This theorem is referenced by: euexex 2104 ralrimd 2548 fiintim 6906 |
Copyright terms: Public domain | W3C validator |