Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eximdh | GIF version |
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 20-May-1996.) |
Ref | Expression |
---|---|
eximdh.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
eximdh.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
eximdh | ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eximdh.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | eximdh.2 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | alrimih 1457 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 → 𝜒)) |
4 | exim 1587 | . 2 ⊢ (∀𝑥(𝜓 → 𝜒) → (∃𝑥𝜓 → ∃𝑥𝜒)) | |
5 | 3, 4 | syl 14 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: eximd 1600 19.41h 1673 hbexd 1682 equsex 1716 equsexd 1717 spimeh 1727 sbiedh 1775 exdistrfor 1788 eximdv 1868 cbvexdh 1914 mopick2 2097 2euex 2101 bj-sbimedh 13652 |
Copyright terms: Public domain | W3C validator |