ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eximdh GIF version

Theorem eximdh 1635
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 20-May-1996.)
Hypotheses
Ref Expression
eximdh.1 (𝜑 → ∀𝑥𝜑)
eximdh.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
eximdh (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))

Proof of Theorem eximdh
StepHypRef Expression
1 eximdh.1 . . 3 (𝜑 → ∀𝑥𝜑)
2 eximdh.2 . . 3 (𝜑 → (𝜓𝜒))
31, 2alrimih 1493 . 2 (𝜑 → ∀𝑥(𝜓𝜒))
4 exim 1623 . 2 (∀𝑥(𝜓𝜒) → (∃𝑥𝜓 → ∃𝑥𝜒))
53, 4syl 14 1 (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371  wex 1516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-ial 1558
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  eximd  1636  19.41h  1709  hbexd  1718  equsex  1752  equsexd  1753  spimeh  1763  sbiedh  1811  exdistrfor  1824  eximdv  1904  cbvexdh  1951  mopick2  2139  2euex  2143  bj-sbimedh  15907
  Copyright terms: Public domain W3C validator