| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eximdh | GIF version | ||
| Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 20-May-1996.) |
| Ref | Expression |
|---|---|
| eximdh.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| eximdh.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| eximdh | ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eximdh.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | eximdh.2 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | alrimih 1515 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 → 𝜒)) |
| 4 | exim 1645 | . 2 ⊢ (∀𝑥(𝜓 → 𝜒) → (∃𝑥𝜓 → ∃𝑥𝜒)) | |
| 5 | 3, 4 | syl 14 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1393 ∃wex 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: eximd 1658 19.41h 1731 hbexd 1740 equsex 1774 equsexd 1775 spimeh 1785 sbiedh 1833 exdistrfor 1846 eximdv 1926 cbvexdh 1973 mopick2 2161 2euex 2165 bj-sbimedh 16135 |
| Copyright terms: Public domain | W3C validator |