ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrimd GIF version

Theorem ralrimd 2584
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 16-Feb-2004.)
Hypotheses
Ref Expression
ralrimd.1 𝑥𝜑
ralrimd.2 𝑥𝜓
ralrimd.3 (𝜑 → (𝜓 → (𝑥𝐴𝜒)))
Assertion
Ref Expression
ralrimd (𝜑 → (𝜓 → ∀𝑥𝐴 𝜒))

Proof of Theorem ralrimd
StepHypRef Expression
1 ralrimd.1 . . 3 𝑥𝜑
2 ralrimd.2 . . 3 𝑥𝜓
3 ralrimd.3 . . 3 (𝜑 → (𝜓 → (𝑥𝐴𝜒)))
41, 2, 3alrimd 1633 . 2 (𝜑 → (𝜓 → ∀𝑥(𝑥𝐴𝜒)))
5 df-ral 2489 . 2 (∀𝑥𝐴 𝜒 ↔ ∀𝑥(𝑥𝐴𝜒))
64, 5imbitrrdi 162 1 (𝜑 → (𝜓 → ∀𝑥𝐴 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371  wnf 1483  wcel 2176  wral 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-4 1533
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-ral 2489
This theorem is referenced by:  ralrimdv  2585  fliftfun  5865  mapxpen  6945  fzrevral  10227
  Copyright terms: Public domain W3C validator