| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralrimd | GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 16-Feb-2004.) |
| Ref | Expression |
|---|---|
| ralrimd.1 | ⊢ Ⅎ𝑥𝜑 |
| ralrimd.2 | ⊢ Ⅎ𝑥𝜓 |
| ralrimd.3 | ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) |
| Ref | Expression |
|---|---|
| ralrimd | ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralrimd.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | ralrimd.3 | . . 3 ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) | |
| 4 | 1, 2, 3 | alrimd 1624 | . 2 ⊢ (𝜑 → (𝜓 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜒))) |
| 5 | df-ral 2480 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜒 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜒)) | |
| 6 | 4, 5 | imbitrrdi 162 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 Ⅎwnf 1474 ∈ wcel 2167 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 |
| This theorem is referenced by: ralrimdv 2576 fliftfun 5843 mapxpen 6909 fzrevral 10180 |
| Copyright terms: Public domain | W3C validator |