ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  an13 GIF version

Theorem an13 558
Description: A rearrangement of conjuncts. (Contributed by NM, 24-Jun-2012.) (Proof shortened by Wolf Lammen, 31-Dec-2012.)
Assertion
Ref Expression
an13 ((𝜑 ∧ (𝜓𝜒)) ↔ (𝜒 ∧ (𝜓𝜑)))

Proof of Theorem an13
StepHypRef Expression
1 an12 556 . 2 ((𝜑 ∧ (𝜓𝜒)) ↔ (𝜓 ∧ (𝜑𝜒)))
2 anass 399 . 2 (((𝜓𝜑) ∧ 𝜒) ↔ (𝜓 ∧ (𝜑𝜒)))
3 ancom 264 . 2 (((𝜓𝜑) ∧ 𝜒) ↔ (𝜒 ∧ (𝜓𝜑)))
41, 2, 33bitr2i 207 1 ((𝜑 ∧ (𝜓𝜒)) ↔ (𝜒 ∧ (𝜓𝜑)))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  an31  559  elxp2  4629
  Copyright terms: Public domain W3C validator