| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > an32 | GIF version | ||
| Description: A rearrangement of conjuncts. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Wolf Lammen, 25-Dec-2012.) |
| Ref | Expression |
|---|---|
| an32 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass 401 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
| 2 | an12 561 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
| 3 | ancom 266 | . 2 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) | |
| 4 | 1, 2, 3 | 3bitri 206 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: an32s 568 3anan32 1013 indifdir 3460 inrab2 3477 reupick 3488 unidif0 4250 resco 5232 f11o 5604 respreima 5762 dff1o6 5899 dfoprab2 6050 xpassen 6985 enq0enq 7614 elioomnf 10160 modfsummod 11964 pcqcl 12824 tx1cn 14937 isms2 15122 elcncf1di 15247 |
| Copyright terms: Public domain | W3C validator |