ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  an32 GIF version

Theorem an32 562
Description: A rearrangement of conjuncts. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Wolf Lammen, 25-Dec-2012.)
Assertion
Ref Expression
an32 (((𝜑𝜓) ∧ 𝜒) ↔ ((𝜑𝜒) ∧ 𝜓))

Proof of Theorem an32
StepHypRef Expression
1 anass 401 . 2 (((𝜑𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓𝜒)))
2 an12 561 . 2 ((𝜑 ∧ (𝜓𝜒)) ↔ (𝜓 ∧ (𝜑𝜒)))
3 ancom 266 . 2 ((𝜓 ∧ (𝜑𝜒)) ↔ ((𝜑𝜒) ∧ 𝜓))
41, 2, 33bitri 206 1 (((𝜑𝜓) ∧ 𝜒) ↔ ((𝜑𝜒) ∧ 𝜓))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  an32s  568  3anan32  991  indifdir  3428  inrab2  3445  reupick  3456  unidif0  4210  resco  5186  f11o  5554  respreima  5707  dff1o6  5844  dfoprab2  5991  xpassen  6924  enq0enq  7543  elioomnf  10089  modfsummod  11711  pcqcl  12571  tx1cn  14683  isms2  14868  elcncf1di  14993
  Copyright terms: Public domain W3C validator