ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  an32 GIF version

Theorem an32 552
Description: A rearrangement of conjuncts. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Wolf Lammen, 25-Dec-2012.)
Assertion
Ref Expression
an32 (((𝜑𝜓) ∧ 𝜒) ↔ ((𝜑𝜒) ∧ 𝜓))

Proof of Theorem an32
StepHypRef Expression
1 anass 399 . 2 (((𝜑𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓𝜒)))
2 an12 551 . 2 ((𝜑 ∧ (𝜓𝜒)) ↔ (𝜓 ∧ (𝜑𝜒)))
3 ancom 264 . 2 ((𝜓 ∧ (𝜑𝜒)) ↔ ((𝜑𝜒) ∧ 𝜓))
41, 2, 33bitri 205 1 (((𝜑𝜓) ∧ 𝜒) ↔ ((𝜑𝜒) ∧ 𝜓))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  an32s  558  3anan32  974  indifdir  3359  inrab2  3376  reupick  3387  unidif0  4123  resco  5083  f11o  5440  respreima  5588  dff1o6  5717  dfoprab2  5858  xpassen  6764  enq0enq  7330  elioomnf  9850  modfsummod  11332  tx1cn  12608  isms2  12793  elcncf1di  12905
  Copyright terms: Public domain W3C validator