Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > an32 | GIF version |
Description: A rearrangement of conjuncts. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Wolf Lammen, 25-Dec-2012.) |
Ref | Expression |
---|---|
an32 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anass 399 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
2 | an12 551 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
3 | ancom 264 | . 2 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) | |
4 | 1, 2, 3 | 3bitri 205 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: an32s 558 3anan32 974 indifdir 3359 inrab2 3376 reupick 3387 unidif0 4123 resco 5083 f11o 5440 respreima 5588 dff1o6 5717 dfoprab2 5858 xpassen 6764 enq0enq 7330 elioomnf 9850 modfsummod 11332 tx1cn 12608 isms2 12793 elcncf1di 12905 |
Copyright terms: Public domain | W3C validator |