| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > an32 | GIF version | ||
| Description: A rearrangement of conjuncts. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Wolf Lammen, 25-Dec-2012.) |
| Ref | Expression |
|---|---|
| an32 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass 401 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
| 2 | an12 561 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
| 3 | ancom 266 | . 2 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) | |
| 4 | 1, 2, 3 | 3bitri 206 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: an32s 568 3anan32 992 indifdir 3433 inrab2 3450 reupick 3461 unidif0 4219 resco 5196 f11o 5567 respreima 5721 dff1o6 5858 dfoprab2 6005 xpassen 6940 enq0enq 7564 elioomnf 10110 modfsummod 11844 pcqcl 12704 tx1cn 14816 isms2 15001 elcncf1di 15126 |
| Copyright terms: Public domain | W3C validator |