ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  an32 GIF version

Theorem an32 562
Description: A rearrangement of conjuncts. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Wolf Lammen, 25-Dec-2012.)
Assertion
Ref Expression
an32 (((𝜑𝜓) ∧ 𝜒) ↔ ((𝜑𝜒) ∧ 𝜓))

Proof of Theorem an32
StepHypRef Expression
1 anass 401 . 2 (((𝜑𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓𝜒)))
2 an12 561 . 2 ((𝜑 ∧ (𝜓𝜒)) ↔ (𝜓 ∧ (𝜑𝜒)))
3 ancom 266 . 2 ((𝜓 ∧ (𝜑𝜒)) ↔ ((𝜑𝜒) ∧ 𝜓))
41, 2, 33bitri 206 1 (((𝜑𝜓) ∧ 𝜒) ↔ ((𝜑𝜒) ∧ 𝜓))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  an32s  568  3anan32  992  indifdir  3433  inrab2  3450  reupick  3461  unidif0  4219  resco  5196  f11o  5567  respreima  5721  dff1o6  5858  dfoprab2  6005  xpassen  6940  enq0enq  7564  elioomnf  10110  modfsummod  11844  pcqcl  12704  tx1cn  14816  isms2  15001  elcncf1di  15126
  Copyright terms: Public domain W3C validator