| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr2i | GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr2i.2 | ⊢ (𝜒 ↔ 𝜓) |
| 3bitr2i.3 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3bitr2i | ⊢ (𝜑 ↔ 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 3bitr2i.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
| 3 | 1, 2 | bitr4i 187 | . 2 ⊢ (𝜑 ↔ 𝜒) |
| 4 | 3bitr2i.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
| 5 | 3, 4 | bitri 184 | 1 ⊢ (𝜑 ↔ 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: an13 563 sbanv 1936 sbexyz 2054 exists1 2174 euxfrdc 2989 euind 2990 rmo4 2996 rmo3f 3000 rmo3 3121 ddifstab 3336 opm 4320 uniuni 4542 rabxp 4756 eliunxp 4861 dmmrnm 4943 imadisj 5090 intirr 5115 resco 5233 funcnv3 5383 fncnv 5387 fun11 5388 fununi 5389 f1mpt 5901 mpomptx 6101 ixp0x 6881 mapsnen 6972 xpcomco 6993 enq0tr 7629 elq 9825 bitsmod 12475 pythagtrip 12814 ntreq0 14814 tx1cn 14951 |
| Copyright terms: Public domain | W3C validator |