![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitr2i | GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr2i.2 | ⊢ (𝜒 ↔ 𝜓) |
3bitr2i.3 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitr2i | ⊢ (𝜑 ↔ 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 3bitr2i.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 1, 2 | bitr4i 187 | . 2 ⊢ (𝜑 ↔ 𝜒) |
4 | 3bitr2i.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
5 | 3, 4 | bitri 184 | 1 ⊢ (𝜑 ↔ 𝜃) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: an13 563 sbanv 1901 sbexyz 2015 exists1 2134 euxfrdc 2938 euind 2939 rmo4 2945 rmo3f 2949 rmo3 3069 ddifstab 3282 opm 4249 uniuni 4466 rabxp 4678 eliunxp 4781 dmmrnm 4861 imadisj 5005 intirr 5030 resco 5148 funcnv3 5293 fncnv 5297 fun11 5298 fununi 5299 f1mpt 5788 mpomptx 5982 ixp0x 6744 mapsnen 6829 xpcomco 6844 enq0tr 7451 elq 9640 pythagtrip 12301 ntreq0 14029 tx1cn 14166 |
Copyright terms: Public domain | W3C validator |