| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr2i | GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr2i.2 | ⊢ (𝜒 ↔ 𝜓) |
| 3bitr2i.3 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3bitr2i | ⊢ (𝜑 ↔ 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 3bitr2i.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
| 3 | 1, 2 | bitr4i 187 | . 2 ⊢ (𝜑 ↔ 𝜒) |
| 4 | 3bitr2i.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
| 5 | 3, 4 | bitri 184 | 1 ⊢ (𝜑 ↔ 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: an13 563 sbanv 1904 sbexyz 2022 exists1 2141 euxfrdc 2950 euind 2951 rmo4 2957 rmo3f 2961 rmo3 3081 ddifstab 3295 opm 4267 uniuni 4486 rabxp 4700 eliunxp 4805 dmmrnm 4885 imadisj 5031 intirr 5056 resco 5174 funcnv3 5320 fncnv 5324 fun11 5325 fununi 5326 f1mpt 5818 mpomptx 6013 ixp0x 6785 mapsnen 6870 xpcomco 6885 enq0tr 7501 elq 9696 pythagtrip 12452 ntreq0 14368 tx1cn 14505 |
| Copyright terms: Public domain | W3C validator |