![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitr2i | GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr2i.2 | ⊢ (𝜒 ↔ 𝜓) |
3bitr2i.3 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitr2i | ⊢ (𝜑 ↔ 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 3bitr2i.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 1, 2 | bitr4i 187 | . 2 ⊢ (𝜑 ↔ 𝜒) |
4 | 3bitr2i.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
5 | 3, 4 | bitri 184 | 1 ⊢ (𝜑 ↔ 𝜃) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: an13 563 sbanv 1889 sbexyz 2003 exists1 2122 euxfrdc 2924 euind 2925 rmo4 2931 rmo3f 2935 rmo3 3055 ddifstab 3268 opm 4235 uniuni 4452 rabxp 4664 eliunxp 4767 dmmrnm 4847 imadisj 4991 intirr 5016 resco 5134 funcnv3 5279 fncnv 5283 fun11 5284 fununi 5285 f1mpt 5772 mpomptx 5966 ixp0x 6726 mapsnen 6811 xpcomco 6826 enq0tr 7433 elq 9622 pythagtrip 12283 ntreq0 13635 tx1cn 13772 |
Copyright terms: Public domain | W3C validator |