Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitr2i | GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr2i.2 | ⊢ (𝜒 ↔ 𝜓) |
3bitr2i.3 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitr2i | ⊢ (𝜑 ↔ 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 3bitr2i.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 1, 2 | bitr4i 186 | . 2 ⊢ (𝜑 ↔ 𝜒) |
4 | 3bitr2i.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
5 | 3, 4 | bitri 183 | 1 ⊢ (𝜑 ↔ 𝜃) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: an13 553 sbanv 1877 sbexyz 1991 exists1 2110 euxfrdc 2911 euind 2912 rmo4 2918 rmo3f 2922 rmo3 3041 ddifstab 3253 opm 4211 uniuni 4428 rabxp 4640 eliunxp 4742 dmmrnm 4822 imadisj 4965 intirr 4989 resco 5107 funcnv3 5249 fncnv 5253 fun11 5254 fununi 5255 f1mpt 5738 mpomptx 5929 ixp0x 6688 mapsnen 6773 xpcomco 6788 enq0tr 7371 elq 9556 pythagtrip 12211 ntreq0 12732 tx1cn 12869 |
Copyright terms: Public domain | W3C validator |