![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitr2i | GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr2i.2 | ⊢ (𝜒 ↔ 𝜓) |
3bitr2i.3 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitr2i | ⊢ (𝜑 ↔ 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 3bitr2i.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 1, 2 | bitr4i 187 | . 2 ⊢ (𝜑 ↔ 𝜒) |
4 | 3bitr2i.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
5 | 3, 4 | bitri 184 | 1 ⊢ (𝜑 ↔ 𝜃) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: an13 563 sbanv 1901 sbexyz 2019 exists1 2138 euxfrdc 2946 euind 2947 rmo4 2953 rmo3f 2957 rmo3 3077 ddifstab 3291 opm 4263 uniuni 4482 rabxp 4696 eliunxp 4801 dmmrnm 4881 imadisj 5027 intirr 5052 resco 5170 funcnv3 5316 fncnv 5320 fun11 5321 fununi 5322 f1mpt 5814 mpomptx 6009 ixp0x 6780 mapsnen 6865 xpcomco 6880 enq0tr 7494 elq 9687 pythagtrip 12421 ntreq0 14300 tx1cn 14437 |
Copyright terms: Public domain | W3C validator |