![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elxp2 | GIF version |
Description: Membership in a cross product. (Contributed by NM, 23-Feb-2004.) |
Ref | Expression |
---|---|
elxp2 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐴 = 〈𝑥, 𝑦〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2478 | . . . 4 ⊢ (∃𝑦 ∈ 𝐶 (𝑥 ∈ 𝐵 ∧ 𝐴 = 〈𝑥, 𝑦〉) ↔ ∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ 𝐴 = 〈𝑥, 𝑦〉))) | |
2 | r19.42v 2651 | . . . 4 ⊢ (∃𝑦 ∈ 𝐶 (𝑥 ∈ 𝐵 ∧ 𝐴 = 〈𝑥, 𝑦〉) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝐶 𝐴 = 〈𝑥, 𝑦〉)) | |
3 | an13 563 | . . . . 5 ⊢ ((𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ 𝐴 = 〈𝑥, 𝑦〉)) ↔ (𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
4 | 3 | exbii 1616 | . . . 4 ⊢ (∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ 𝐴 = 〈𝑥, 𝑦〉)) ↔ ∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
5 | 1, 2, 4 | 3bitr3i 210 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝐶 𝐴 = 〈𝑥, 𝑦〉) ↔ ∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
6 | 5 | exbii 1616 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝐶 𝐴 = 〈𝑥, 𝑦〉) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
7 | df-rex 2478 | . 2 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐴 = 〈𝑥, 𝑦〉 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝐶 𝐴 = 〈𝑥, 𝑦〉)) | |
8 | elxp 4676 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
9 | 6, 7, 8 | 3bitr4ri 213 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐴 = 〈𝑥, 𝑦〉) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ∃wrex 2473 〈cop 3621 × cxp 4657 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-opab 4091 df-xp 4665 |
This theorem is referenced by: opelxp 4689 xpiundi 4717 xpiundir 4718 ssrel2 4749 f1o2ndf1 6281 xpdom2 6885 elreal 7888 |
Copyright terms: Public domain | W3C validator |