![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elxp2 | GIF version |
Description: Membership in a cross product. (Contributed by NM, 23-Feb-2004.) |
Ref | Expression |
---|---|
elxp2 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐴 = ⟨𝑥, 𝑦⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2461 | . . . 4 ⊢ (∃𝑦 ∈ 𝐶 (𝑥 ∈ 𝐵 ∧ 𝐴 = ⟨𝑥, 𝑦⟩) ↔ ∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ 𝐴 = ⟨𝑥, 𝑦⟩))) | |
2 | r19.42v 2634 | . . . 4 ⊢ (∃𝑦 ∈ 𝐶 (𝑥 ∈ 𝐵 ∧ 𝐴 = ⟨𝑥, 𝑦⟩) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝐶 𝐴 = ⟨𝑥, 𝑦⟩)) | |
3 | an13 563 | . . . . 5 ⊢ ((𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ 𝐴 = ⟨𝑥, 𝑦⟩)) ↔ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
4 | 3 | exbii 1605 | . . . 4 ⊢ (∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ 𝐴 = ⟨𝑥, 𝑦⟩)) ↔ ∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
5 | 1, 2, 4 | 3bitr3i 210 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝐶 𝐴 = ⟨𝑥, 𝑦⟩) ↔ ∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
6 | 5 | exbii 1605 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝐶 𝐴 = ⟨𝑥, 𝑦⟩) ↔ ∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
7 | df-rex 2461 | . 2 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐴 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝐶 𝐴 = ⟨𝑥, 𝑦⟩)) | |
8 | elxp 4645 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
9 | 6, 7, 8 | 3bitr4ri 213 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐴 = ⟨𝑥, 𝑦⟩) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1353 ∃wex 1492 ∈ wcel 2148 ∃wrex 2456 ⟨cop 3597 × cxp 4626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-opab 4067 df-xp 4634 |
This theorem is referenced by: opelxp 4658 xpiundi 4686 xpiundir 4687 ssrel2 4718 f1o2ndf1 6231 xpdom2 6833 elreal 7829 |
Copyright terms: Public domain | W3C validator |