Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elxp2 | GIF version |
Description: Membership in a cross product. (Contributed by NM, 23-Feb-2004.) |
Ref | Expression |
---|---|
elxp2 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐴 = 〈𝑥, 𝑦〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2454 | . . . 4 ⊢ (∃𝑦 ∈ 𝐶 (𝑥 ∈ 𝐵 ∧ 𝐴 = 〈𝑥, 𝑦〉) ↔ ∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ 𝐴 = 〈𝑥, 𝑦〉))) | |
2 | r19.42v 2627 | . . . 4 ⊢ (∃𝑦 ∈ 𝐶 (𝑥 ∈ 𝐵 ∧ 𝐴 = 〈𝑥, 𝑦〉) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝐶 𝐴 = 〈𝑥, 𝑦〉)) | |
3 | an13 558 | . . . . 5 ⊢ ((𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ 𝐴 = 〈𝑥, 𝑦〉)) ↔ (𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
4 | 3 | exbii 1598 | . . . 4 ⊢ (∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ∧ 𝐴 = 〈𝑥, 𝑦〉)) ↔ ∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
5 | 1, 2, 4 | 3bitr3i 209 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝐶 𝐴 = 〈𝑥, 𝑦〉) ↔ ∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
6 | 5 | exbii 1598 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝐶 𝐴 = 〈𝑥, 𝑦〉) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
7 | df-rex 2454 | . 2 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐴 = 〈𝑥, 𝑦〉 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝐶 𝐴 = 〈𝑥, 𝑦〉)) | |
8 | elxp 4628 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
9 | 6, 7, 8 | 3bitr4ri 212 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐴 = 〈𝑥, 𝑦〉) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1348 ∃wex 1485 ∈ wcel 2141 ∃wrex 2449 〈cop 3586 × cxp 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-opab 4051 df-xp 4617 |
This theorem is referenced by: opelxp 4641 xpiundi 4669 xpiundir 4670 ssrel2 4701 f1o2ndf1 6207 xpdom2 6809 elreal 7790 |
Copyright terms: Public domain | W3C validator |